import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns # Create the data : copied from examples/kde_ridgeplot.py rs = np.random.RandomState(1979) x = rs.randn(500) g = np.tile(list("ABCDEFGHIJ"), 50) df = pd.DataFrame(dict(x=x, g=g)) m = df.g.map(ord) df["x"] += m fig, ax = plt.subplots(1, 1, num=1, clear=True) sns.kdeplot( df, x="x", hue="g", ax=ax, fill=True, linewidth=2, clip_on=False, ec="w", alpha=1, ) from mpl_visual_context.spreader import spready polys = ax.collections dy = 0.5 * max([p.get_datalim(p.axes.transData).height for p in polys]) yindices = np.arange(len(polys)) gg = df["g"].unique() yoffsets = spready(polys, yindices, dy=dy) ax.set_ylim(min(yoffsets), max(yoffsets) + dy) ax.set_yticks(yoffsets, labels=gg[::-1]) ax.legend_.remove() plt.show()
Total running time of the script: (0 minutes 0.076 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4