MMCV 1.x version uses LrUpdaterHook and MomentumUpdaterHook to adjust the learning rate and momentum. However, the design of LrUpdaterHook has been difficult to meet more abundant customization requirements due to the development of the training strategies. Hence, MMEngine proposes parameter schedulers (ParamScheduler).
The interface of the parameter scheduler is consistent with PyTroch’s learning rate scheduler (LRScheduler). In addition, the parameter scheduler provides stronger functions. For details, please refer to Parameter Scheduler User Guide.
Learning rate scheduler (LrUpdater) migration¶MMEngine uses LRScheduler instead of LrUpdaterHook. The field in the config file is changed from the original lr_config
to param_scheduler
. The learning rate config in MMCV corresponds to the parameter scheduler config in MMEngine as follows:
The learning rate warm-up can be achieved through the combination of schedulers by specifying the effective range begin
and end
. There are 3 learning rate warm-up methods in MMCV, namely 'constant'
, 'linear'
, 'exp'
. The corresponding config in MMEngine should be modified as follows:
lr_config = dict( warmup='constant', warmup_ratio=0.1, warmup_iters=500, warmup_by_epoch=False )
param_scheduler = [ dict(type='ConstantLR', factor=0.1, begin=0, end=500, by_epoch=False), dict(...) # the main learning rate scheduler ]Linear warm-up¶ MMCV-1.x MMEngine
lr_config = dict( warmup='linear', warmup_ratio=0.1, warmup_iters=500, warmup_by_epoch=False )
param_scheduler = [ dict(type='LinearLR', start_factor=0.1, begin=0, end=500, by_epoch=False), dict(...) # the main learning rate scheduler ]Exponential warm-up¶ MMCV-1.x MMEngine
lr_config = dict( warmup='exp', warmup_ratio=0.1, warmup_iters=500, warmup_by_epoch=False )
param_scheduler = [ dict(type='ExponentialLR', gamma=0.1, begin=0, end=500, by_epoch=False), dict(...) # the main learning rate scheduler ]Fixed learning rate (FixedLrUpdaterHook) migration¶ MMCV-1.x MMEngine
lr_config = dict(policy='fixed')
param_scheduler = [ dict(type='ConstantLR', factor=1) ]Step learning rate (StepLrUpdaterHook) migration¶ MMCV-1.x MMEngine
lr_config = dict( policy='step', step=[8, 11], gamma=0.1, by_epoch=True )
param_scheduler = [ dict(type='MultiStepLR', milestones=[8, 11], gamma=0.1, by_epoch=True) ]Poly learning rate (PolyLrUpdaterHook) migration¶ MMCV-1.x MMEngine
lr_config = dict( policy='poly', power=0.7, min_lr=0.001, by_epoch=True )
param_scheduler = [ dict(type='PolyLR', power=0.7, eta_min=0.001, begin=0, end=num_epochs, by_epoch=True) ]Exponential learning rate (ExpLrUpdaterHook) migration¶ MMCV-1.x MMEngine
lr_config = dict( policy='exp', power=0.5, by_epoch=True )
param_scheduler = [ dict(type='ExponentialLR', gamma=0.5, begin=0, end=num_epochs, by_epoch=True) ]Cosine annealing learning rate (CosineAnnealingLrUpdaterHook) migration¶ MMCV-1.x MMEngine
lr_config = dict( policy='CosineAnnealing', min_lr=0.5, by_epoch=True )
param_scheduler = [ dict(type='CosineAnnealingLR', eta_min=0.5, T_max=num_epochs, begin=0, end=num_epochs, by_epoch=True) ]FlatCosineAnnealingLrUpdaterHook migration¶
The learning rate strategy combined by multiple phases like FlatCosineAnnealing originally needs to be achieved by rewriting a Hook. But in MMEngine, it can be achieved with combining two parameter scheduler configs:
MMCV-1.x MMEnginelr_config = dict( policy='FlatCosineAnnealing', start_percent=0.5, min_lr=0.005, by_epoch=True )
param_scheduler = [ dict(type='ConstantLR', factor=1, begin=0, end=num_epochs * 0.75) dict(type='CosineAnnealingLR', eta_min=0.005, begin=num_epochs * 0.75, end=num_epochs, T_max=num_epochs * 0.25, by_epoch=True) ]CosineRestartLrUpdaterHook migration¶ MMCV-1.x MMEngine
lr_config = dict(policy='CosineRestart', periods=[5, 10, 15], restart_weights=[1, 0.7, 0.3], min_lr=0.001, by_epoch=True)
param_scheduler = [ dict(type='CosineRestartLR', periods=[5, 10, 15], restart_weights=[1, 0.7, 0.3], eta_min=0.001, by_epoch=True) ]OneCycleLrUpdaterHook migration¶ MMCV-1.x MMEngine
lr_config = dict(policy='OneCycle', max_lr=0.02, total_steps=90000, pct_start=0.3, anneal_strategy='cos', div_factor=25, final_div_factor=1e4, three_phase=True, by_epoch=False)
param_scheduler = [ dict(type='OneCycleLR', eta_max=0.02, total_steps=90000, pct_start=0.3, anneal_strategy='cos', div_factor=25, final_div_factor=1e4, three_phase=True, by_epoch=False) ]
Notice: by_epoch
defaults to False
in MMCV. It now defaults to True
in MMEngine.
lr_config = dict( policy='LinearAnnealing', min_lr_ratio=0.01, by_epoch=True )
param_scheduler = [ dict(type='LinearLR', start_factor=1, end_factor=0.01, begin=0, end=num_epochs, by_epoch=True) ]MomentumUpdater migration¶
MMCV uses momentum_config
field and MomentumUpdateHook to adjust momentum. The momentum in MMEngine is also controlled by the parameter scheduler. Users can simply change the LR
of the learning rate scheduler to Momentum
to use the same strategy to adjust the momentum. The momentum scheduler shares the same param_scheduler
field in the config with the learning rate scheduler:
lr_config = dict(...) momentum_config = dict( policy='CosineAnnealing', min_momentum=0.1, by_epoch=True )
param_scheduler = [ # config of learning rate schedulers dict(...), # config of momentum schedulers dict(type='CosineAnnealingMomentum', eta_min=0.1, T_max=num_epochs, begin=0, end=num_epochs, by_epoch=True) ]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4