Note
You are reading the documentation for MMClassification 0.x, which will soon be deprecated at the end of 2022. We recommend you upgrade to MMClassification 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check the installation tutorial, migration tutorial and changelog for more details.
Tutorial 4: Custom Data Pipelines¶ Design of Data pipelines¶Following typical conventions, we use Dataset
and DataLoader
for data loading with multiple workers. Indexing Dataset
returns a dict of data items corresponding to the arguments of models forward method.
The data preparation pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.
The operations are categorized into data loading, pre-processing and formatting.
Here is an pipeline example for ResNet-50 training on ImageNet.
img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', size=224), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', size=256), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]
For each operation, we list the related dict fields that are added/updated/removed. At the end of the pipeline, we use Collect
to only retain the necessary items for forward computation.
LoadImageFromFile
add: img, img_shape, ori_shape
By default, LoadImageFromFile
loads images from disk but it may lead to IO bottleneck for efficient small models. Various backends are supported by mmcv to accelerate this process. For example, if the training machines have setup memcached, we can revise the config as follows.
memcached_root = '/mnt/xxx/memcached_client/' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args=dict( backend='memcached', server_list_cfg=osp.join(memcached_root, 'server_list.conf'), client_cfg=osp.join(memcached_root, 'client.conf'))), ]
More supported backends can be found in mmcv.fileio.FileClient.
Pre-processing¶Resize
add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
update: img, img_shape
RandomFlip
add: flip, flip_direction
update: img
RandomCrop
update: img, pad_shape
Normalize
add: img_norm_cfg
update: img
ToTensor
update: specified by keys
.
ImageToTensor
update: specified by keys
.
Collect
remove: all other keys except for those specified by keys
For more information about other data transformation classes, please refer to Data Transformations
Extend and use custom pipelines¶Write a new pipeline in any file, e.g., my_pipeline.py
, and place it in the folder mmcls/datasets/pipelines/
. The pipeline class needs to override the __call__
method which takes a dict as input and returns a dict.
from mmcls.datasets import PIPELINES @PIPELINES.register_module() class MyTransform(object): def __call__(self, results): # apply transforms on results['img'] return results
Import the new class in mmcls/datasets/pipelines/__init__.py
.
... from .my_pipeline import MyTransform __all__ = [ ..., 'MyTransform' ]
Use it in config files.
img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='RandomResizedCrop', size=224), dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), dict(type='MyTransform'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['gt_label']), dict(type='Collect', keys=['img', 'gt_label']) ]
After designing data pipelines, you can use the visualization tools to view the performance.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4