A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://mlflow.org/docs/latest/python_api/../_modules/mlflow/models/evaluation/validation.html below:

mlflow.models.evaluation.validation

import logging
import operator
import os
from decimal import Decimal
from typing import Optional

from mlflow.exceptions import MlflowException
from mlflow.models.evaluation import EvaluationResult
from mlflow.protos.databricks_pb2 import BAD_REQUEST, INVALID_PARAMETER_VALUE

_logger = logging.getLogger(__name__)


[docs]class MetricThreshold:
    """
    This class allows you to define metric thresholds for model validation.
    Allowed thresholds are: threshold, min_absolute_change, min_relative_change.

    Args:
        threshold: (Optional) A number representing the value threshold for the metric.

            - If greater is better for the metric, the metric value has to be
              >= threshold to pass validation.
            - Otherwise, the metric value has to be <= threshold to pass the validation.

        min_absolute_change: (Optional) A positive number representing the minimum absolute
            change required for candidate model to pass validation with
            the baseline model.

            - If greater is better for the metric, metric value has to be
              >= baseline model metric value + min_absolute_change to pass the validation.
            - Otherwise, metric value has to be <= baseline model metric value - min_absolute_change
              to pass the validation.

        min_relative_change: (Optional) A floating point number between 0 and 1 representing
            the minimum relative change (in percentage of
            baseline model metric value) for candidate model
            to pass the comparison with the baseline model.

            - If greater is better for the metric, metric value has to be
              >= baseline model metric value * (1 + min_relative_change)
            - Otherwise, metric value has to be
              <= baseline model metric value * (1 - min_relative_change)
            - Note that if the baseline model metric value is equal to 0, the
              threshold falls back performing a simple verification that the
              candidate metric value is better than the baseline metric value,
              i.e. metric value >= baseline model metric value + 1e-10 if greater
              is better; metric value <= baseline model metric value - 1e-10 if
              lower is better.

        greater_is_better: A required boolean representing whether greater value is
            better for the metric.
    """

    def __init__(
        self,
        threshold=None,
        min_absolute_change=None,
        min_relative_change=None,
        greater_is_better=None,
    ):
        if threshold is not None and type(threshold) not in {int, float}:
            raise MetricThresholdClassException("`threshold` parameter must be a number.")
        if min_absolute_change is not None and (
            type(min_absolute_change) not in {int, float} or min_absolute_change <= 0
        ):
            raise MetricThresholdClassException(
                "`min_absolute_change` parameter must be a positive number."
            )
        if min_relative_change is not None:
            if not isinstance(min_relative_change, float):
                raise MetricThresholdClassException(
                    "`min_relative_change` parameter must be a floating point number."
                )
            if min_relative_change < 0 or min_relative_change > 1:
                raise MetricThresholdClassException(
                    "`min_relative_change` parameter must be between 0 and 1."
                )
        if greater_is_better is None:
            raise MetricThresholdClassException("`greater_is_better` parameter must be defined.")
        if not isinstance(greater_is_better, bool):
            raise MetricThresholdClassException("`greater_is_better` parameter must be a boolean.")
        if threshold is None and min_absolute_change is None and min_relative_change is None:
            raise MetricThresholdClassException("no threshold was specified.")
        self._threshold = threshold
        self._min_absolute_change = min_absolute_change
        self._min_relative_change = min_relative_change
        self._greater_is_better = greater_is_better

    @property
    def threshold(self):
        """
        Value of the threshold.
        """
        return self._threshold

    @property
    def min_absolute_change(self):
        """
        Value of the minimum absolute change required to pass model comparison with baseline model.
        """
        return self._min_absolute_change

    @property
    def min_relative_change(self):
        """
        Float value of the minimum relative change required to pass model comparison with
        baseline model.
        """
        return self._min_relative_change

    @property
    def greater_is_better(self):
        """
        Boolean value representing whether greater value is better for the metric.
        """
        return self._greater_is_better

    def __str__(self):
        """
        Returns a human-readable string consisting of all specified thresholds.
        """
        threshold_strs = []
        if self._threshold is not None:
            threshold_strs.append(f"Threshold: {self._threshold}.")
        if self._min_absolute_change is not None:
            threshold_strs.append(f"Minimum Absolute Change: {self._min_absolute_change}.")
        if self._min_relative_change is not None:
            threshold_strs.append(f"Minimum Relative Change: {self._min_relative_change}.")
        if self._greater_is_better is not None:
            if self._greater_is_better:
                threshold_strs.append("Greater value is better.")
            else:
                threshold_strs.append("Lower value is better.")
        return " ".join(threshold_strs)


class MetricThresholdClassException(MlflowException):
    def __init__(self, _message, **kwargs):
        message = "Could not instantiate MetricThreshold class: " + _message
        super().__init__(message, error_code=INVALID_PARAMETER_VALUE, **kwargs)


class _MetricValidationResult:
    """
    Internal class for representing validation result per metric.
    Not user facing, used for organizing metric failures and generating failure message
    more conveniently.

    Args:
        metric_name: String representing the metric name
        candidate_metric_value: value of metric for candidate model
        metric_threshold: :py:class: `MetricThreshold<mlflow.models.validation.MetricThreshold>`
            The MetricThreshold for the metric.
        baseline_metric_value: value of metric for baseline model
    """

    missing_candidate = False
    missing_baseline = False
    threshold_failed = False
    min_absolute_change_failed = False
    min_relative_change_failed = False

    def __init__(
        self,
        metric_name,
        candidate_metric_value,
        metric_threshold,
        baseline_metric_value=None,
    ):
        self.metric_name = metric_name
        self.candidate_metric_value = candidate_metric_value
        self.baseline_metric_value = baseline_metric_value
        self.metric_threshold = metric_threshold

    def __str__(self):
        """
        Returns a human-readable string representing the validation result for the metric.
        """
        if self.is_success():
            return f"Metric {self.metric_name} passed the validation."

        if self.missing_candidate:
            return (
                f"Metric validation failed: metric {self.metric_name} was missing from the "
                f"evaluation result of the candidate model."
            )

        result_strs = []
        if self.threshold_failed:
            result_strs.append(
                f"Metric {self.metric_name} value threshold check failed: "
                f"candidate model {self.metric_name} = {self.candidate_metric_value}, "
                f"{self.metric_name} threshold = {self.metric_threshold.threshold}."
            )
        if self.missing_baseline:
            result_strs.append(
                f"Model comparison failed: metric {self.metric_name} was missing from "
                f"the evaluation result of the baseline model."
            )
        else:
            if self.min_absolute_change_failed:
                result_strs.append(
                    f"Metric {self.metric_name} minimum absolute change check failed: "
                    f"candidate model {self.metric_name} = {self.candidate_metric_value}, "
                    f"baseline model {self.metric_name} = {self.baseline_metric_value}, "
                    f"{self.metric_name} minimum absolute change threshold = "
                    f"{self.metric_threshold.min_absolute_change}."
                )
            if self.min_relative_change_failed:
                result_strs.append(
                    f"Metric {self.metric_name} minimum relative change check failed: "
                    f"candidate model {self.metric_name} = {self.candidate_metric_value}, "
                    f"baseline model {self.metric_name} = {self.baseline_metric_value}, "
                    f"{self.metric_name} minimum relative change threshold = "
                    f"{self.metric_threshold.min_relative_change}."
                )
        return " ".join(result_strs)

    def is_success(self):
        return (
            not self.missing_candidate
            and not self.missing_baseline
            and not self.threshold_failed
            and not self.min_absolute_change_failed
            and not self.min_relative_change_failed
        )


class ModelValidationFailedException(MlflowException):
    def __init__(self, message, **kwargs):
        super().__init__(message, error_code=BAD_REQUEST, **kwargs)


[docs]def validate_evaluation_results(
    validation_thresholds: dict[str, MetricThreshold],
    candidate_result: EvaluationResult,
    baseline_result: Optional[EvaluationResult] = None,
):
    """
    Validate the evaluation result from one model (candidate) against another
    model (baseline). If the candidate results do not meet the validation
    thresholds, an ModelValidationFailedException will be raised.

    .. note::

        This API is a replacement for the deprecated model validation
        functionality in the :py:func:`mlflow.evaluate` API.

    Args:
        validation_thresholds: A dictionary of metric name to
            :py:class:`mlflow.models.MetricThreshold` used for model validation.
            Each metric name must either be the name of a builtin metric or the
            name of a metric defined in the ``extra_metrics`` parameter.
        candidate_result: The evaluation result of the candidate model.
            Returned by the :py:func:`mlflow.evaluate` API.
        baseline_result: The evaluation result of the baseline model.
            Returned by the :py:func:`mlflow.evaluate` API.
            If set to None, the candidate model result will be
            compared against the threshold values directly.

    Code Example:

        .. code-block:: python
            :caption: Example of Model Validation

            import mlflow
            from mlflow.models import MetricThreshold

            thresholds = {
                "accuracy_score": MetricThreshold(
                    # accuracy should be >=0.8
                    threshold=0.8,
                    # accuracy should be at least 5 percent greater than baseline model accuracy
                    min_absolute_change=0.05,
                    # accuracy should be at least 0.05 greater than baseline model accuracy
                    min_relative_change=0.05,
                    greater_is_better=True,
                ),
            }

            # Get evaluation results for the candidate model
            candidate_result = mlflow.evaluate(
                model="<YOUR_CANDIDATE_MODEL_URI>",
                data=eval_dataset,
                targets="ground_truth",
                model_type="classifier",
            )

            # Get evaluation results for the baseline model
            baseline_result = mlflow.evaluate(
                model="<YOUR_BASELINE_MODEL_URI>",
                data=eval_dataset,
                targets="ground_truth",
                model_type="classifier",
            )

            # Validate the results
            mlflow.validate_evaluation_results(
                thresholds,
                candidate_result,
                baseline_result,
            )

        See `the Model Validation documentation
        <../../models/index.html#performing-model-validation>`_ for more details.
    """
    try:
        assert type(validation_thresholds) is dict
        for key in validation_thresholds.keys():
            assert type(key) is str
        for threshold in validation_thresholds.values():
            assert isinstance(threshold, MetricThreshold)
    except AssertionError:
        raise MlflowException(
            message="The validation thresholds argument must be a dictionary that maps strings "
            "to MetricThreshold objects.",
            error_code=INVALID_PARAMETER_VALUE,
        )

    _logger.info("Validating candidate model metrics against baseline")
    _validate(
        validation_thresholds,
        candidate_result.metrics,
        baseline_result.metrics if baseline_result else {},
    )
    _logger.info("Model validation passed!")


def _validate(
    validation_thresholds: dict[str, MetricThreshold],
    candidate_metrics: dict[str, float],
    baseline_metrics: dict[str, float],
):
    """
    Validate the model based on validation_thresholds by metrics value and
    metrics comparison between candidate model's metrics (candidate_metrics) and
    baseline model's metrics (baseline_metrics).

    Args:
        validation_thresholds: A dictionary from metric_name to MetricThreshold.
        candidate_metrics: The metric evaluation result of the candidate model.
        baseline_metrics: The metric evaluation result of the baseline model.

    Raises:
        If the validation does not pass, raise an MlflowException with detail failure message.
    """
    validation_results = {
        metric_name: _MetricValidationResult(
            metric_name,
            candidate_metrics.get(metric_name),
            threshold,
            baseline_metrics.get(metric_name),
        )
        for (metric_name, threshold) in validation_thresholds.items()
    }

    for metric_name, metric_threshold in validation_thresholds.items():
        validation_result = validation_results[metric_name]

        if metric_name not in candidate_metrics:
            validation_result.missing_candidate = True
            continue

        candidate_metric_value = candidate_metrics[metric_name]
        baseline_metric_value = baseline_metrics[metric_name] if baseline_metrics else None

        # If metric is greater is better, >= is used, otherwise <= is used
        # for thresholding metric value and model comparison
        comparator_fn = operator.__ge__ if metric_threshold.greater_is_better else operator.__le__
        operator_fn = operator.add if metric_threshold.greater_is_better else operator.sub

        if metric_threshold.threshold is not None:
            # metric threshold fails
            # - if not (metric_value >= threshold) for greater is better
            # - if not (metric_value <= threshold) for lower is better
            validation_result.threshold_failed = not comparator_fn(
                candidate_metric_value, metric_threshold.threshold
            )

        if (
            metric_threshold.min_relative_change or metric_threshold.min_absolute_change
        ) and metric_name not in baseline_metrics:
            validation_result.missing_baseline = True
            continue

        if metric_threshold.min_absolute_change is not None:
            # metric comparison absolute change fails
            # - if not (metric_value >= baseline + min_absolute_change) for greater is better
            # - if not (metric_value <= baseline - min_absolute_change) for lower is better
            validation_result.min_absolute_change_failed = not comparator_fn(
                Decimal(candidate_metric_value),
                Decimal(operator_fn(baseline_metric_value, metric_threshold.min_absolute_change)),
            )

        if metric_threshold.min_relative_change is not None:
            # If baseline metric value equals 0, fallback to simple comparison check
            if baseline_metric_value == 0:
                _logger.warning(
                    f"Cannot perform relative model comparison for metric {metric_name} as "
                    "baseline metric value is 0. Falling back to simple comparison: verifying "
                    "that candidate metric value is better than the baseline metric value."
                )
                validation_result.min_relative_change_failed = not comparator_fn(
                    Decimal(candidate_metric_value),
                    Decimal(operator_fn(baseline_metric_value, 1e-10)),
                )
                continue
            # metric comparison relative change fails
            # - if (metric_value - baseline) / baseline < min_relative_change for greater is better
            # - if (baseline - metric_value) / baseline < min_relative_change for lower is better
            if metric_threshold.greater_is_better:
                relative_change = (
                    candidate_metric_value - baseline_metric_value
                ) / baseline_metric_value
            else:
                relative_change = (
                    baseline_metric_value - candidate_metric_value
                ) / baseline_metric_value
            validation_result.min_relative_change_failed = (
                relative_change < metric_threshold.min_relative_change
            )

    failure_messages = []

    for metric_validation_result in validation_results.values():
        if metric_validation_result.is_success():
            continue
        failure_messages.append(str(metric_validation_result))

    if not failure_messages:
        return

    raise ModelValidationFailedException(message=os.linesep.join(failure_messages))

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4