A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://mlflow.org/docs/latest/python_api/../_modules/mlflow/metrics/base.html below:

mlflow.metrics.base

Source code for mlflow.metrics.base
from dataclasses import dataclass

import numpy as np

from mlflow.utils.validation import _is_numeric


def standard_aggregations(scores):
    return {
        "mean": np.mean(scores),
        "variance": np.var(scores),
        "p90": np.percentile(scores, 90),
    }


[docs]@dataclass
class MetricValue:
    """
    The value of a metric.


    Args:
        scores: The value of the metric per row
        justifications: The justification (if applicable) for the respective score
        aggregate_results: A dictionary mapping the name of the aggregation to its value
    """

    scores: list[str] | list[float] | None = None
    justifications: list[str] | None = None
    aggregate_results: dict[str, float] | None = None

    def __post_init__(self):
        if (
            self.aggregate_results is None
            and isinstance(self.scores, (list, tuple))
            and all(_is_numeric(score) for score in self.scores)
        ):
            self.aggregate_results = standard_aggregations(self.scores)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4