from typing import Any from mlflow.entities._mlflow_object import _MlflowObject from mlflow.entities.logged_model_output import LoggedModelOutput from mlflow.protos.service_pb2 import RunOutputs as ProtoRunOutputs [docs]class RunOutputs(_MlflowObject): """RunOutputs object.""" def __init__(self, model_outputs: list[LoggedModelOutput]) -> None: self._model_outputs = model_outputs def __eq__(self, other: _MlflowObject) -> bool: if type(other) is type(self): return self.__dict__ == other.__dict__ return False @property def model_outputs(self) -> list[LoggedModelOutput]: """Array of model outputs.""" return self._model_outputs [docs] def to_proto(self): run_outputs = ProtoRunOutputs() run_outputs.model_outputs.extend( [model_output.to_proto() for model_output in self.model_outputs] ) return run_outputs [docs] def to_dictionary(self) -> dict[Any, Any]: return { "model_outputs": self.model_outputs, } [docs] @classmethod def from_proto(cls, proto): model_outputs = [ LoggedModelOutput.from_proto(model_output) for model_output in proto.model_outputs ] return cls(model_outputs)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4