This script demonstrates the different available style sheets on a common set of example plots: scatter plot, image, bar graph, patches, line plot and histogram.
Any of these style sheets can be imported (i.e. activated) by its name. For example for the ggplot style:
>>> plt.style.use('ggplot')
The names of the available style sheets can be found in the list matplotlib.style.available
(they are also printed in the corner of each plot below).
See more details in Customizing Matplotlib using style sheets.
import matplotlib.pyplot as plt import numpy as np import matplotlib.colors as mcolors from matplotlib.patches import Rectangle # Fixing random state for reproducibility np.random.seed(19680801) def plot_scatter(ax, prng, nb_samples=100): """Scatter plot.""" for mu, sigma, marker in [(-.5, 0.75, 'o'), (0.75, 1., 's')]: x, y = prng.normal(loc=mu, scale=sigma, size=(2, nb_samples)) ax.plot(x, y, ls='none', marker=marker) ax.set_xlabel('X-label') ax.set_title('Axes title') return ax def plot_colored_lines(ax): """Plot lines with colors following the style color cycle.""" t = np.linspace(-10, 10, 100) def sigmoid(t, t0): return 1 / (1 + np.exp(-(t - t0))) nb_colors = len(plt.rcParams['axes.prop_cycle']) shifts = np.linspace(-5, 5, nb_colors) amplitudes = np.linspace(1, 1.5, nb_colors) for t0, a in zip(shifts, amplitudes): ax.plot(t, a * sigmoid(t, t0), '-') ax.set_xlim(-10, 10) return ax def plot_bar_graphs(ax, prng, min_value=5, max_value=25, nb_samples=5): """Plot two bar graphs side by side, with letters as x-tick labels.""" x = np.arange(nb_samples) ya, yb = prng.randint(min_value, max_value, size=(2, nb_samples)) width = 0.25 ax.bar(x, ya, width) ax.bar(x + width, yb, width, color='C2') ax.set_xticks(x + width, labels=['a', 'b', 'c', 'd', 'e']) return ax def plot_colored_circles(ax, prng, nb_samples=15): """ Plot circle patches. NB: draws a fixed amount of samples, rather than using the length of the color cycle, because different styles may have different numbers of colors. """ for sty_dict, j in zip(plt.rcParams['axes.prop_cycle'](), range(nb_samples)): ax.add_patch(plt.Circle(prng.normal(scale=3, size=2), radius=1.0, color=sty_dict['color'])) ax.grid(visible=True) # Add title for enabling grid plt.title('ax.grid(True)', family='monospace', fontsize='small') ax.set_xlim([-4, 8]) ax.set_ylim([-5, 6]) ax.set_aspect('equal', adjustable='box') # to plot circles as circles return ax def plot_image_and_patch(ax, prng, size=(20, 20)): """Plot an image with random values and superimpose a circular patch.""" values = prng.random_sample(size=size) ax.imshow(values, interpolation='none') c = plt.Circle((5, 5), radius=5, label='patch') ax.add_patch(c) # Remove ticks ax.set_xticks([]) ax.set_yticks([]) def plot_histograms(ax, prng, nb_samples=10000): """Plot 4 histograms and a text annotation.""" params = ((10, 10), (4, 12), (50, 12), (6, 55)) for a, b in params: values = prng.beta(a, b, size=nb_samples) ax.hist(values, histtype="stepfilled", bins=30, alpha=0.8, density=True) # Add a small annotation. ax.annotate('Annotation', xy=(0.25, 4.25), xytext=(0.9, 0.9), textcoords=ax.transAxes, va="top", ha="right", bbox=dict(boxstyle="round", alpha=0.2), arrowprops=dict( arrowstyle="->", connectionstyle="angle,angleA=-95,angleB=35,rad=10"), ) return ax def plot_figure(style_label=""): """Setup and plot the demonstration figure with a given style.""" # Use a dedicated RandomState instance to draw the same "random" values # across the different figures. prng = np.random.RandomState(96917002) fig, axs = plt.subplots(ncols=6, nrows=1, num=style_label, figsize=(14.8, 2.8), layout='constrained') # make a suptitle, in the same style for all subfigures, # except those with dark backgrounds, which get a lighter color: background_color = mcolors.rgb_to_hsv( mcolors.to_rgb(plt.rcParams['figure.facecolor']))[2] if background_color < 0.5: title_color = [0.8, 0.8, 1] else: title_color = np.array([19, 6, 84]) / 256 fig.suptitle(style_label, x=0.01, ha='left', color=title_color, fontsize=14, fontfamily='DejaVu Sans', fontweight='normal') plot_scatter(axs[0], prng) plot_image_and_patch(axs[1], prng) plot_bar_graphs(axs[2], prng) plot_colored_lines(axs[3]) plot_histograms(axs[4], prng) plot_colored_circles(axs[5], prng) # add divider rec = Rectangle((1 + 0.025, -2), 0.05, 16, clip_on=False, color='gray') axs[4].add_artist(rec) if __name__ == "__main__": # Set up a list of all available styles, in alphabetical order but # the `default` and `classic` ones, which will be forced resp. in # first and second position. # styles with leading underscores are for internal use such as testing # and plot types gallery. These are excluded here. style_list = ['default', 'classic'] + sorted( style for style in plt.style.available if style != 'classic' and not style.startswith('_')) # Plot a demonstration figure for every available style sheet. for style_label in style_list: with plt.rc_context({"figure.max_open_warning": len(style_list)}): with plt.style.context(style_label): plot_figure(style_label=style_label) plt.show()
Total running time of the script: (0 minutes 29.885 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4