A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://mathworld.wolfram.com/StackPolyomino.html below:

Stack Polyomino -- from Wolfram MathWorld

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld Stack Polyomino

A stack polyomino is a self-avoiding convex polyomino containing two adjacent corners of its minimal bounding rectangle. The number of stack polyominoes with perimeter is the Fibonacci number , having generating function

(1)

(Delest and Viennot 1984).

The anisotropic area and perimeter generating function and partial generating functions , connected by

(2)

satisfy the self-reciprocity and inversion relations

(3)

and

(4)

(Bousquet-Mélou et al. 1999).

See alsoConvex Polyomino

,

Lattice Polygon

,

Self-Avoiding Polygon Explore with Wolfram|Alpha ReferencesBousquet-Mélou, M.; Guttmann, A. J.; Orrick, W. P.; and Rechnitzer, A. "Inversion Relations, Reciprocity and Polyominoes." 23 Aug 1999. http://arxiv.org/abs/math.CO/9908123.Delest, M.-P. and Viennot, G. "Algebraic Languages and Polyominoes [sic] Enumeration." Theoret. Comput. Sci. 34, 169-206, 1984.Wright, E. M. "Stacks." Quart. J. Math. (Oxford) 19, 313-320, 1968. Referenced on Wolfram|AlphaStack Polyomino Cite this as:

Weisstein, Eric W. "Stack Polyomino." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/StackPolyomino.html

Subject classifications

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4