,
Constant Problem,
Gelfond's Theorem,
Lindemann-Weierstrass Theorem,
Richardson's Theorem,
Uniformity Conjecture Explore with Wolfram|Alpha ReferencesChow, T. Y. "What is a Closed-Form Number." Amer. Math. Monthly 106, 440-448, 1999.Chudnovsky, G. V. "On the Way to Schanuel's Conjecture." Ch. 3 in Contributions to the Theory of Transcendental Numbers. Providence, RI: Amer. Math. Soc., pp. 145-176, 1984.Lin, F.-C. "Schanuel's Conjecture Implies Ritt's Conjecture." Chinese J. Math. 11, 41-50, 1983.Macintyre, A. "Schanuel's Conjecture and Free Exponential Rings." Ann. Pure Appl. Logic 51, 241-246, 1991.Marker, D. "Model Theory and Exponentiation." Not. Amer. Math. Soc. 43, 753-759, 1996. Referenced on Wolfram|AlphaSchanuel's Conjecture Cite this as:Weisstein, Eric W. "Schanuel's Conjecture." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/SchanuelsConjecture.html
Subject classificationsRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4