A self-avoiding polygon containing three corners of its minimal bounding rectangle. The anisotropic area and perimeter generating function and partial generating functions , connected by
(1)
satisfy the self-reciprocity and inversion relations
(2)
and
(3)
(Bousquet-Mélou et al. 1999).
See alsoLattice Polygon,
Self-Avoiding Polygon Explore with Wolfram|Alpha ReferencesBousquet-Mélou, M.; Guttmann, A. J.; Orrick, W. P.; and Rechnitzer, A. "Inversion Relations, Reciprocity and Polyominoes." 23 Aug 1999. http://arxiv.org/abs/math.CO/9908123. Referenced on Wolfram|AlphaFerrers Graph Polygon Cite this as:Weisstein, Eric W. "Ferrers Graph Polygon." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/FerrersGraphPolygon.html
Subject classificationsRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4