A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://mathworld.wolfram.com/Column-ConvexPolyomino.html below:

Column-Convex Polyomino -- from Wolfram MathWorld

Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld Column-Convex Polyomino

A column-convex polyomino is a self-avoiding convex polyomino such that the intersection of any vertical line with the polyomino has at most two connected components. Column-convex polyominos are also called vertically convex polyominoes. A row-convex polyomino is similarly defined. The number of column-convex -polyominoes is given by the third-order recurrence relation

(1)

for with , , , and (Hickerson 1999). The first few are 1, 2, 6, 19, 61, 196, 629, 2017, ... (OEIS A001169). has generating function

See alsoConvex Polyomino

,

Polyomino

,

Row-Convex Polyomino Explore with Wolfram|Alpha ReferencesDelest, M.-P. and Viennot, G. "Algebraic Language and Polyominoes [sic] Enumerations." Theor. Comput. Sci. 34, 169-206, 1984.Enting, I. G. and Guttmann, A. J. "On the Area of Square Lattice Polygons." J. Statist. Phys. 58, 475-484, 1990.Hickerson, D. "Counting Horizontally Convex Polyominoes." J. Integer Sequences 2, No. 99.1.8, 1999. http://www.math.uwaterloo.ca/JIS/VOL2/HICK2/chcp.html.Klarner, D. A. "Some Results Concerning Polyominoes." Fib. Quart. 3, 9-20, 1965.Klarner, D. A. "Cell Growth Problems." Canad. J. Math. 19, 851-863, 1967.Klarner, D. A. "The Number of Graded Partially Ordered Sets." J. Combin. Th. 6, 12-19, 1969.Lunnon, W. F. "Counting Polyominoes." In Computers in Number Theory, Proc. Science Research Council Atlas Symposium No. 2 held at Oxford, from 18-23 August, 1969 (Ed. A. O. L. Atkin and B. J. Birch). London: Academic Press, pp. 347-372, 1971.Pólya, G. "On the Number of Certain Lattice Polygons." J. Combin. Th. 6, 102-105, 1969.Sloane, N. J. A. Sequence A001169/M1636 in "The On-Line Encyclopedia of Integer Sequences."Stanley, R. P. "Generating Functions." In Studies in Combinatorics (Ed. G.-C. Rota). Washington, DC: Amer. Math. Soc., pp. 100-141, 1978.Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 259, 1999.Temperley, H. N. V. "Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules." Phys. Rev. Ser. 2 103, 1-16, 1956. Referenced on Wolfram|AlphaColumn-Convex Polyomino Cite this as:

Weisstein, Eric W. "Column-Convex Polyomino." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/Column-ConvexPolyomino.html

Subject classifications

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4