After having read a little into the comparison thread, I tried some performance compares on my own: the one between the current CVS version and Python 1.5.2. Both versions were compiled on the same Linux machine, using the same GCC compiler and optimization settings. Here are the results from pybench 0.9 and pystone; some of the figures show quite dramatic slow-downs. I'm not sure where they result from, but they do concern me a bit, since the upgrade path from 1.5.2 is probably the most common one to be expected in user-land. Since it is possible that these figures result from my specific machine setup, I'd like to know what other people see on their machines. Thanks. -- Python 1.5.2: Pystone(1.1) time for 10000 passes = 3.26 This machine benchmarks at 3067.48 pystones/second Python CVS: Pystone(1.1) time for 10000 passes = 4.43 This machine benchmarks at 2257.34 pystones/second -- PYBENCH 0.9 Benchmark: /home/lemburg/tmp/pybench-cvs-O.pyb (rounds=10, warp=20) Tests: per run per oper. diff *) ------------------------------------------------------------------------ BuiltinFunctionCalls: 1152.60 ms 9.04 us +64.70% BuiltinMethodLookup: 903.90 ms 1.72 us CompareFloats: 908.30 ms 2.02 us +40.94% CompareFloatsIntegers: 1276.25 ms 2.84 us +37.15% CompareIntegers: 1075.50 ms 1.19 us +21.09% CompareLongs: 989.40 ms 2.20 us +47.12% CompareStrings: 844.80 ms 2.25 us +33.99% CompareUnicode: 1018.65 ms 2.72 us n/a ConcatStrings: 1226.30 ms 8.18 us +92.56% ConcatUnicode: 1575.40 ms 10.50 us n/a CreateInstances: 2094.05 ms 49.86 us +101.86% CreateStringsWithConcat: 1515.75 ms 7.58 us +111.67% CreateUnicodeWithConcat: 1833.85 ms 9.17 us n/a DictCreation: 2795.30 ms 18.64 us +203.34% DictWithFloatKeys: 2285.70 ms 3.81 us +18.73% DictWithIntegerKeys: 1444.65 ms 2.41 us +58.53% DictWithStringKeys: 1262.60 ms 2.10 us +52.83% ForLoops: 989.95 ms 99.00 us -10.01% IfThenElse: 1232.45 ms 1.83 us +23.25% ListSlicing: 621.40 ms 177.54 us NestedForLoops: 986.60 ms 2.82 us +52.09% NormalClassAttribute: 1231.15 ms 2.05 us +36.70% NormalInstanceAttribute: 1114.15 ms 1.86 us +27.11% PythonFunctionCalls: 1251.25 ms 7.58 us +46.09% PythonMethodCalls: 1034.35 ms 13.79 us +42.19% Recursion: 922.15 ms 73.77 us +36.76% SecondImport: 1055.45 ms 42.22 us +100.47% SecondPackageImport: 1061.35 ms 42.45 us +96.31% SecondSubmoduleImport: 1292.35 ms 51.69 us +77.89% SimpleComplexArithmetic: 1748.00 ms 7.95 us +120.97% SimpleDictManipulation: 1172.85 ms 3.91 us +47.85% SimpleFloatArithmetic: 881.25 ms 1.60 us +12.30% SimpleIntFloatArithmetic: 833.80 ms 1.26 us SimpleIntegerArithmetic: 839.00 ms 1.27 us SimpleListManipulation: 1252.60 ms 4.64 us +69.37% SimpleLongArithmetic: 1360.65 ms 8.25 us +100.43% SmallLists: 2380.05 ms 9.33 us +116.72% SmallTuples: 1793.80 ms 7.47 us +101.52% SpecialClassAttribute: 1257.35 ms 2.10 us +37.91% SpecialInstanceAttribute: 1340.25 ms 2.23 us +21.13% StringMappings: 1601.50 ms 12.71 us n/a StringPredicates: 1059.70 ms 3.78 us n/a StringSlicing: 1235.90 ms 7.06 us +98.32% TryExcept: 1272.55 ms 0.85 us +28.39% TryRaiseExcept: 1383.45 ms 92.23 us +77.48% TupleSlicing: 1163.05 ms 11.08 us +75.29% UnicodeMappings: 1232.80 ms 68.49 us n/a UnicodePredicates: 1294.95 ms 5.76 us n/a UnicodeProperties: 1410.45 ms 7.05 us n/a UnicodeSlicing: 1296.80 ms 7.41 us n/a ------------------------------------------------------------------------ Average round time: 73388.00 ms n/a *) measured against: /home/lemburg/tmp/pybench-1.5.2-O.pyb (rounds=10, warp=20) (The compares not shown are below noise level (+-10%)) -- Marc-Andre Lemburg ______________________________________________________________________ Company & Consulting: http://www.egenix.com/ Python Software: http://www.lemburg.com/python/
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4