A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s13762-013-0456-0 below:

Zinc and cadmium accumulation by Lupinus uncinatus Schldl. grown in nutrient solution

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York, NY, pp 625–676

    Book  Google Scholar 

  • Al-Khedhairy AA, Al-Rokayan SA, Al-Misned FA (2001) Cadmium toxicity and cell stress response. Pakistan J Biol Sci 4:1046–1049

    Article  Google Scholar 

  • Angelova V, Ivanova R, Delibatova V, Ivanov K (2004) Bioaccumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod 19:197–205

    Article  CAS  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2011) Heavy metals accumulation in plants growing in ex tin mining catchment. Int J Environ Sci Tech 8(2):401–416

    Article  CAS  Google Scholar 

  • Baker AJ, Walker MPL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL

    Google Scholar 

  • Baker AJ, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metallophyte Thalaspi caerulescens J. & C. presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Bernal MP, McGrath SP (1994) Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L. Plant Soil 166:83–92

    Article  CAS  Google Scholar 

  • Brennan RF, Bolland MDA (2003) Lupinus luteus cv. Wodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kalya. Plant Soil 248:177–185

    Article  Google Scholar 

  • Brooks RR (1998) Plants that hyper accumulate heavy metals: their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining. CABI Publication, Walingford

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulatorThlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Cakmak I, Welch RM, Hart J, Norvell WA, Oztïrk L, Kochian LV (2000) Uptake and translocation of leaf applied cadmium (109Cd) in diploid, tetraploid and hexaploid wheat. J Exp Bot 51:221–226

    Article  CAS  Google Scholar 

  • Chino M, Baba A (1981) The effects of some environmental factors on the partitioning of zinc and cadmium between roots and tops of rice plants. J Plant Nutr 3:203–214

    Article  CAS  Google Scholar 

  • De Lorenzo C, Iannetta PPM, Fernandez-Pascual M, James EK, Lucas MM, Sprent JI, Witty JF, Minchin FR, De Felipe MR (1993) Oxygen diffusion in Lupinus nodules. II. Mechanisms of diffusion barrier operation. J Exp Bot 44:1469–1474

    Article  Google Scholar 

  • Dechamps C, Roosens NH, Hotte C, Meerts P (2005) Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant Soil 273:327–335

    Article  CAS  Google Scholar 

  • Dede G, Ozdemir S, Dede OH (2012) Effect of soil amendments on phytoextraction potential of Brassica juncea growing on sewage sludge. Int J Environ Sci Tech. doi:10.1007/s13762-012-0058-2

    Google Scholar 

  • di Sanita TL, Gabbrielli R (1999) Responses to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Ehsan M, Molumeli AP, Espinosa HV, Baeza RA, Pérez MJ, Soto HM, Ojeda TE, Jaén CD, Ruiz BA, Robledo SE (2007) Contamination time effect on plant available fractions of Zn and Cd in a Mexican clay loam soil. J Appl Sci 7(16):2380–2384

    Article  CAS  Google Scholar 

  • Ehsan M, Delgado KS, Alarcon AV, Chavez AA, Landero ND, Contreras DJ, Molumeli PA (2009) Phytostabilization of cadmium contaminated soils by Lupinus uncinatus Schldl. Span J Agric Res 7(2):390–397

    Article  Google Scholar 

  • Ernst WHO, Nelissen HJM, Ten Bookum WM (2000) Combination toxicology of metal-enriched soils: physiological responses of a Zn-and Cd-resistant ecotype of Silene vulgaris on polymetallic soils. Environ Exp Bot 43:55–71

    Article  CAS  Google Scholar 

  • Esteban E, Moreno E, Peñalosa J, Cabrero JI, Millan R, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322

    Article  CAS  Google Scholar 

  • Fernández-Pascual M, De Lorenzo C, De Felipe MR, Rajalakshami S, Gordon AJ, Thomas BJ, Minchin FR (1996) Possible reasons for relative salt stress tolerance in nodules of white Lupin cv. Multolupa. J Exp Bot 47:1709–1716

    Article  Google Scholar 

  • Fodor F, Sarvari E, Lang F, Szigeti Z, Cseh E (1996) Effects of Pb and Cd on cucumber depending on the Fe-complex in the culture solution. J Plant Physiol 148:434–439

    Article  CAS  Google Scholar 

  • Franco-Hernández MO, Vásquez-Muerrieta MS, Patiño-Siciliano A, Dendooven L (2010) Heavy metals concentration in plants growing on mine tailings in Central Mexico. Biresour Technol 101:3864–3869

    Article  Google Scholar 

  • Garcia-Gomez A, Bernal MP, Roig A (2002) Growth of ornamental plants in two composts prepared from agroindustrial wastes. Bioresour Technol 83:81–87

    Article  CAS  Google Scholar 

  • Grytsyuk N, Arapis G, Perepelyatnikova L, Ivanova T, Vynograds’ka V (2006) Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil. Sci Total Environ 354:224–231

    Article  CAS  Google Scholar 

  • Iannetta PPM, De Lorenzo C, James EK, Fernandez-Pascual M, Sprent JI, Lucas MM, Witty JF, De Felipe MR, Minchin FR (1993) Oxygen diffusion in lupin nodules. J Exp Bot 44:1461–1467

    Article  CAS  Google Scholar 

  • Isaac RA, Kerber JD (1971) Atomic absorption and flame photometry: techniques and uses in soil, plant, and water analysis. In: Walsh LM (ed) Instrumental methods for analysis of soils and plant tissue. Soil Science Society of America, Madison, pp 17–37

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • Kidd PS, Diez J, Martinez CN (2004) Tolerance and bioaccumulation of heavy metals in five populations of Cistus ladanifer L. subsp. ladanifer. Plant Soil 258:189–205

    Article  CAS  Google Scholar 

  • Koeppe DE (1977) The uptake, distribution and effect of cadmium and lead in plants. Sci Total Environ 7:197–206

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals. A review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Liu J, Reid RJ, Smith FA (2000) The mechanism of cobalt toxicity in mung beans. Physiol Plant 110:104–110

    Article  CAS  Google Scholar 

  • Lucho-Constantino CA, Prieto-García F, Del Razo LM, Rodríguez Vázquez R, Poggi-Varaldo HM (2005) Chemical fractionation of boron and heavy metals in soils irrigated with wastewater in central Mexico. Agric Ecosyst Environ 108:57–71

    Article  CAS  Google Scholar 

  • Lutts S, Lefevre I, Delperee C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33:1271–1279

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Meharg AA (2005) Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Soil 274:163–174

    Article  CAS  Google Scholar 

  • Pastor J, Hernandez AJ, Prieto N, Pascal MF (2003) Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn. J Plant Physiol 160:1457–1465

    Article  CAS  Google Scholar 

  • Peterson PJ (1983) Adaptatons to toxic metals. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic Press, London

    Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal polluted ecosystems: hope for commercialization. Russ J Plant Physl 50:764–780

    Article  Google Scholar 

  • Reay PF, Waugh C (1981) Mineral-element composition of Lupinus albus and Lupinus angustifolius in relation to manganese accumulation. Plant Soil (6 Brooks, R. R., (1998).0):435–444

  • SAS Institute (2000) SAS version 9.1. SAS Institute, Cary, NC

    Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoexraction of Cd with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Shah K, Nongrynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plantarum 51(4):618–634

    Article  CAS  Google Scholar 

  • Singh A, Eapen S, Fulekar MH (2009) Potential of Medicago sativa for uptake of cadmium of contaminated environment. Rum Biotechnol lett 14:4164–4169

    CAS  Google Scholar 

  • Tang C, Robson AD (1993) Lupinus species differ in their requirements for iron. Plant Soil 157:11–18

    Article  CAS  Google Scholar 

  • Tassi E, Pedron F, Barbafieri M, Petruzzelli G (2004) Phosphate-assisted phytoextraction in As-contaminated soil. Eng Life Sci 4:341–346

    Article  CAS  Google Scholar 

  • Tolra RP, Poschenreider C, Barcelo J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. L. Influence on growth and mineral nutrition. J Plant Nutr 19:1531–1540

    Article  CAS  Google Scholar 

  • Vazquez S, Esteban E, Goldsbrough P (2005) Arsenate-induced phytochelatins in white lupin: influence of phosphate status. Physiol Plantarum 124:42–50

    Google Scholar 

  • Vazquez S, Agha R, Granado A, Sarro MJ, Esteban E, Peñalosa JM, Carpena RO (2006) Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Pollut 177:349–365

    Article  CAS  Google Scholar 

  • Vera R, Millan R, Schmid T, Tallos A, Recreo F (2002) Behaviour of mercury in soil plant system. Application to phytoremediation studies. In: Faz A, Ortiz R, Mermut AR (Eds.) Sustainable use and management of soils in arid and semi arid regions. Sumas Cartegena (Spain) Quaderna editorial

  • Ximenez-Embun P, Madrid-Albarran Y, Camara C, Cuadrado C, Burbano C, Muzquiz M (2001) Evaluation of Lupinus species to accumulate heavy metals from waste waters. Int J Phytoremediation 3:369–379

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31:755–762

    Article  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Nielsen NE (1996) Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J Essent Oil Res 8:259–274

    Article  CAS  Google Scholar 

  • Zornoza P, Vazquez S, Esteban E, Fernandez-Pascual M, Carpena R (2002) Cadmium stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiol Biochem 40:1003–1009

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4