A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s12402-010-0019-x below:

Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review

  • Alexander GE, Newman JD, Symmes D (1976) Convergence of prefrontal and acoustic inputs upon neurons in the superior temporal gyrus of the awake squirrel monkey. Brain Res 116:334–338

    Article  PubMed  CAS  Google Scholar 

  • Alsop B (2007) Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD). J Neurosci Methods 162:42–48

    Article  PubMed  Google Scholar 

  • American Psychiatric Association CoNaS (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychatric Association, Washington, DC

    Google Scholar 

  • Anstey K, Christensen H (2000) Education, activity, health, blood pressure and apolipoprotein E as predictors of cognitive change in old age: a review. Gerontology 46:163–177

    Article  PubMed  CAS  Google Scholar 

  • Aoki C, Go CG, Venkatesan C, Kurose H (1994) Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650:181–204

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF (1997) Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11:151–162

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Steere JC, Hunt RD (1996) The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry 53:448–455

    PubMed  CAS  Google Scholar 

  • Aspide R, Gironi Carnevale UA, Sergeant JA, Sadile AG (1998) Non-selective attention and nitric oxide in putative animal models of Attention-Deficit Hyperactivity Disorder. Behav Brain Res 95:123–133

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 14:4467–4480

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P (1997) Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience 80:697–715

    Article  PubMed  CAS  Google Scholar 

  • Avale ME, Falzone TL, Gelman DM, Low MJ, Grandy DK, Rubinstein M (2004a) The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol Psychiatry 9:718–726

    PubMed  CAS  Google Scholar 

  • Avale ME, Nemirovsky SI, Raisman-Vozari R, Rubinstein M (2004b) Elevated serotonin is involved in hyperactivity but not in the paradoxical effect of amphetamine in mice neonatally lesioned with 6-hydroxydopamine. J Neurosci Res 78:289–296

    Article  PubMed  CAS  Google Scholar 

  • Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J (1996) Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol 53:1293–1296

    PubMed  CAS  Google Scholar 

  • Bakker SC, van der Meulen EM, Oteman N, Schelleman H, Pearson PL, Buitelaar JK, Sinke RJ (2005) DAT1, DRD4, and DRD5 polymorphisms are not associated with ADHD in Dutch families. Am J Med Genet B Neuropsychiatr Genet 132B:50–52

    Article  PubMed  Google Scholar 

  • Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5:405–409

    Article  PubMed  CAS  Google Scholar 

  • Barr CL, Feng Y, Wigg KG, Schachar R, Tannock R, Roberts W, Malone M, Kennedy JL (2001) 5′-untranslated region of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder. Am J Med Genet 105:84–90

    Article  PubMed  CAS  Google Scholar 

  • Barr CL, Kroft J, Feng Y, Wigg K, Roberts W, Malone M, Ickowicz A, Schachar R, Tannock R, Kennedy JL (2002) The norepinephrine transporter gene and attention-deficit hyperactivity disorder. Am J Med Genet 114:255–259

    Article  PubMed  Google Scholar 

  • Baumgardner TL, Singer HS, Denckla MB, Rubin MA, Abrams MT, Colli MJ, Reiss AL (1996) Corpus callosum morphology in children with Tourette syndrome and attention deficit hyperactivity disorder. Neurology 47:477–482

    PubMed  CAS  Google Scholar 

  • Benton A (1991) Prefrontal injury and behavior in children. Dev Neuropsychol 7:275–282

    Article  Google Scholar 

  • Biederman J, Newcorn J, Sprich S (1991) Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders. Am J Psychiatry 148:564–577

    PubMed  CAS  Google Scholar 

  • Biederman J, Faraone SV, Keenan K, Benjamin J, Krifcher B, Moore C, Sprich-Buckminster S, Ugaglia K, Jellinek MS, Steingard R (1992) Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder. Patterns of comorbidity in probands and relatives psychiatrically and pediatrically referred samples. Arch Gen Psychiatry 49:728–738

    PubMed  CAS  Google Scholar 

  • Biederman J, Faraone SV, Mick E, Spencer T, Wilens T, Kiely K, Guite J, Ablon JS, Reed E, Warburton R (1995) High risk for attention deficit hyperactivity disorder among children of parents with childhood onset of the disorder: a pilot study. Am J Psychiatry 152:431–435

    PubMed  CAS  Google Scholar 

  • Birkenhager WH, Forette F, Seux ML, Wang JG, Staessen JA (2001) Blood pressure, cognitive functions, and prevention of dementias in older patients with hypertension. Arch Intern Med 161:152–156

    Article  PubMed  CAS  Google Scholar 

  • Blum K, Cull JG, Braverman ER, Comings DE (1996) Reward deficiency syndrom. Am Sci 84:132–145

    Google Scholar 

  • Bobb AJ, Castellanos FX, Addington AM, Rapoport JL (2005) Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsychiatr Genet 132B:109–125

    PubMed  Google Scholar 

  • Boix F, Qiao SW, Kolpus T, Sagvolden T (1998) Chronic l-deprenyl treatment alters brain monoamine levels and reduces impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder. Behav Brain Res 94:153–162

    Article  PubMed  CAS  Google Scholar 

  • Bradley C (1937) The behaviour of children receiving benzedrine. Am J Psychiatry 94:577–585

    Google Scholar 

  • Bruno KJ, Hess EJ (2006) The alpha(2C)-adrenergic receptor mediates hyperactivity of coloboma mice, a model of attention deficit hyperactivity disorder. Neurobiol Dis 23:679–688

    Article  PubMed  CAS  Google Scholar 

  • Bruno KJ, Freet CS, Twining RC, Egami K, Grigson PS, Hess EJ (2007) Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis 25:206–216

    Article  PubMed  CAS  Google Scholar 

  • Burd L, Klug MG, Coumbe MJ, Kerbeshian J (2003) Children and adolescents with attention deficit-hyperactivity disorder: 1. Prevalence and cost of care. J Child Neurol 18:555–561

    Article  PubMed  Google Scholar 

  • Cada AM, Gray EP, Ferguson SA (2000) Minimal behavioral effects from developmental cerebellar stunting in young rats induced by postnatal treatment with alpha-difluoromethylornithine. Neurotoxicol Teratol 22:415–420

    Article  PubMed  CAS  Google Scholar 

  • Carder RK, Jackson D, Morris HJ, Lund RD, Zigmond MJ (1989) Dopamine released from mesencephalic transplants restores modulation of striatal acetylcholine release after neonatal 6-hydroxydopamine: an in vitro analysis. Exp Neurol 105:251–259

    Article  PubMed  CAS  Google Scholar 

  • Carey MP, Diewald LM, Esposito FJ, Pellicano MP, Gironi Carnevale UA, Sergeant JA, Papa M, Sadile AG (1998) Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res 94:173–185

    Article  PubMed  CAS  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Schubert AB, Vauss YC, Vaituzis AC, Dickstein DP, Sarfatti SE, Rapoport JL (1997) Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 36:374–383

    Article  PubMed  CAS  Google Scholar 

  • Castaneda E, Whishaw IQ, Lermer L, Robinson TE (1990) Dopamine depletion in neonatal rats: effects on behavior and striatal dopamine release assessed by intracerebral microdialysis during adulthood. Brain Res 508:30–39

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Elia J, Kruesi MJ, Gulotta CS, Mefford IN, Potter WZ, Ritchie GF, Rapoport JL (1994) Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Res 52:305–316

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Elia J, Kruesi MJ, Marsh WL, Gulotta CS, Potter WZ, Ritchie GF, Hamburger SD, Rapoport JL (1996a) Cerebrospinal fluid homovanillic acid predicts behavioral response to stimulants in 45 boys with attention deficit/hyperactivity disorder. Neuropsychopharmacology 14:125–137

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N, Kaysen D, Krain AL, Ritchie GF, Rajapakse JC, Rapoport JL (1996b) Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry 53:607–616

    PubMed  CAS  Google Scholar 

  • Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T, Vaituzis AC, Blumenthal JD, Nelson J, Bastain TM, Zijdenbos A, Evans AC, Rapoport JL (2001) Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 58:289–295

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 288:1740–1748

    Article  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    Article  PubMed  CAS  Google Scholar 

  • Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD (2003) Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 30:306–311

    PubMed  CAS  Google Scholar 

  • Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D, Knell E, Kocsis P, Baumgarten R, Kovacs BW (1991) The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 266:1793–1800

    Article  PubMed  CAS  Google Scholar 

  • Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56:993–998

    PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1973) Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res 55:369–382

    Article  PubMed  CAS  Google Scholar 

  • Daly G, Hawi Z, Fitzgerald M, Gill M (1999) Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol Psychiatry 4:192–196

    Article  PubMed  CAS  Google Scholar 

  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2002) Stereoselective effects of methylphenidate on motor hyperactivity in juvenile rats induced by neonatal 6-hydroxydopamine lesioning. Psychopharmacology (Berl) 160:92–98

    Article  CAS  Google Scholar 

  • de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJ (1995) Alpha 2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder. Neurochem Res 20:427–433

    Article  PubMed  Google Scholar 

  • Dell’Anna ME, Luthman J, Lindqvist E, Olson L (1993) Development of monoamine systems after neonatal anoxia in rats. Brain Res Bull 32:159–170

    Article  PubMed  Google Scholar 

  • Dell’Anna ME, Geloso MC, Draisci G, Luthman J (1995) Transient changes in Fos and GFAP immunoreactivity precede neuronal loss in the rat hippocampus following neonatal anoxia. Exp Neurol 131:144–156

    Article  PubMed  Google Scholar 

  • Descarries L, Soghomonian JJ, Garcia S, Doucet G, Bruno JP (1992) Ultrastructural analysis of the serotonin hyperinnervation in adult rat neostriatum following neonatal dopamine denervation with 6-hydroxydopamine. Brain Res 569:1–13

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY, Roth RH (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog Brain Res 85:367–402

    Article  PubMed  CAS  Google Scholar 

  • Diana G (2002) Does hypertension alone lead to cognitive decline in spontaneously hypertensive rats? Behav Brain Res 134:113–121

    Article  PubMed  Google Scholar 

  • DiMaio S, Grizenko N, Joober R (2003) Dopamine genes and attention-deficit hyperactivity disorder: a review. J Psychiatry Neurosci 28:27–38

    PubMed  Google Scholar 

  • Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133

    Article  PubMed  CAS  Google Scholar 

  • Durston S, Hulshoff Pol HE, Schnack HG, Buitelaar JK, Steenhuis MP, Minderaa RB, Kahn RS, van Engeland H (2004) Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 43:332–340

    Article  PubMed  Google Scholar 

  • Erinoff L, MacPhail RC, Heller A, Seiden LS (1979) Age-dependent effects of 6-hydroxydopamine on locomotor activity in the rat. Brain Res 164:195–205

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Liebenauer LL, King AC, Fitzgerald GA, Cohen RM, Zametkin AJ (1994) Reduced brain metabolism in hyperactive girls. J Am Acad Child Adolesc Psychiatry 33:858–868

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Cohen RM, Liebenauer LL, Jons PH, Zametkin AJ (1997) Cerebral glucose metabolism in adolescent girls with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 36:1399–1406

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Doyle AE (2001) The nature and heritability of attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 10:299–316

    PubMed  CAS  Google Scholar 

  • Faraone SV, Biederman J, Weiffenbach B, Keith T, Chu MP, Weaver A, Spencer TJ, Wilens TE, Frazier J, Cleves M, Sakai J (1999) Dopamine D4 gene 7-repeat allele and attention deficit hyperactivity disorder. Am J Psychiatry 156:768–770

    PubMed  CAS  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA (1996) Neuroanatomical and functional alterations resulting from early postnatal cerebellar insults in rodents. Pharmacol Biochem Behav 55:663–671

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA (2001) A review of rodent models of ADHD. In: Solanto MV, Arnsten AFT, Castellanos FX (eds) Stimulant drugs and ADHD, basic and clinical neuroscience. University Press Oxford, Oxford, pp 209–220

    Google Scholar 

  • Ferguson SA, Holson RR (1999) Neonatal dexamethasone on day 7 causes mild hyperactivity and cerebellar stunting. Neurotoxicol Teratol 21:71–76

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Paule MG, Holson RR (1996) Functional effects of methylazoxymethanol-induced cerebellar hypoplasia in rats. Neurotoxicol Teratol 18:529–537

    Article  PubMed  CAS  Google Scholar 

  • Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J (1997) Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48:589–601

    PubMed  CAS  Google Scholar 

  • Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL, Newbury DF, Crawford LR, Palmer CG, Woodward JA, Del’Homme M, Cantwell DP, Nelson SF, Monaco AP, Smalley SL (2002) A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet 70:1183–1196

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 27:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Frank Y, Pergolizzi RG, Perilla MJ (2004) Dopamine D4 receptor gene and attention deficit hyperactivity disorder. Pediatr Neurol 31:345–348

    Article  PubMed  Google Scholar 

  • Franke B, Neale BM, Faraone SV (2009) Genome-wide association studies in ADHD. Hum Genet 126:13–50

    Article  PubMed  CAS  Google Scholar 

  • Frohna PA, Neal-Beliveau BS, Joyce JN (1997) Delayed plasticity of the mesolimbic dopamine system following neonatal 6-OHDA lesions. Synapse 25:293–305

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Caron MG (2001) Genetics of childhood disorders: XXIV. ADHD, part 8: hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry 40:380–382

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 26:148–153

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  PubMed  CAS  Google Scholar 

  • Gallo A, Gonzalez-Lima F, Sadile AG (2002) Impaired metabolic capacity in the perirhinal and posterior parietal cortex lead to dissociation between attentional, motivational and spatial components of exploration in the Naples high-excitability rat. Behav Brain Res 130:133–140

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanchez C, Estevez-Gonzalez A, Suarez-Romero E, Junque C (1997) Right hemisphere dysfunction in subjects with attention-deficit disorder with and without hyperactivity. J Child Neurol 12:107–115

    Article  PubMed  CAS  Google Scholar 

  • Gelernter J, O’Malley S, Risch N, Kranzler HR, Krystal J, Merikangas K, Kennedy JL, Kidd KK (1991) No association between an allele at the D2 dopamine receptor gene (DRD2) and alcoholism. JAMA 266:1801–1807

    Article  PubMed  CAS  Google Scholar 

  • Giedd JN, Castellanos FX, Casey BJ, Kozuch P, King AC, Hamburger SD, Rapoport JL (1994) Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. Am J Psychiatry 151:665–669

    PubMed  CAS  Google Scholar 

  • Gilger JW, Pennington BF, DeFries JC (1992) A twin study of the etiology of comorbidity: attention-deficit hyperactivity disorder and dyslexia. J Am Acad Child Adolesc Psychiatry 31:343–348

    Article  PubMed  CAS  Google Scholar 

  • Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M (1997) Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 2:311–313

    Article  PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    Article  PubMed  CAS  Google Scholar 

  • Grady DL, Chi HC, Ding YC, Smith M, Wang E, Schuck S, Flodman P, Spence MA, Swanson JM, Moyzis RK (2003) High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Mol Psychiatry 8:536–545

    Article  PubMed  CAS  Google Scholar 

  • Gramatte T, Schmidt J (1986) The effect of early postnatal hypoxia on the development of locomotor activity in rats. Biomed Biochim Acta 45:523–529

    PubMed  CAS  Google Scholar 

  • Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341:549–555

    Article  PubMed  CAS  Google Scholar 

  • Halperin JM, Newcorn JH, Schwartz ST, Sharma V, Siever LJ, Koda VH, Gabriel S (1997) Age-related changes in the association between serotonergic function and aggression in boys with ADHD. Biol Psychiatry 41:682–689

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Linster C, Patil M, Ma D, Cekic M (1997) Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol 77:3326–3339

    PubMed  CAS  Google Scholar 

  • Hawi Z, Dring M, Kirley A, Foley D, Kent L, Craddock N, Asherson P, Curran S, Gould A, Richards S, Lawson D, Pay H, Turic D, Langley K, Owen M, O’Donovan M, Thapar A, Fitzgerald M, Gill M (2002) Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry 7:718–725

    Article  PubMed  CAS  Google Scholar 

  • Hebebrand J, Dempfle A, Saar K, Thiele H, Herpertz-Dahlmann B, Linder M, Kiefl H, Remschmidt H, Hemminger U, Warnke A, Knolker U, Heiser P, Friedel S, Hinney A, Schafer H, Nurnberg P, Konrad K (2006) A genome-wide scan for attention-deficit/hyperactivity disorder in 155 German sib-pairs. Mol Psychiatry 11:196–205

    Article  PubMed  CAS  Google Scholar 

  • Heffner TG, Seiden LS (1982) Possible involvement of serotonergic neurons in the reduction of locomotor hyperactivity caused by amphetamine in neonatal rats depleted of brain dopamine. Brain Res 244:81–90

    Article  PubMed  CAS  Google Scholar 

  • Heilman KM, Voeller KK, Nadeau SE (1991) A possible pathophysiologic substrate of attention deficit hyperactivity disorder. J Child Neurol 6(Suppl):S76–S81

    PubMed  Google Scholar 

  • Hess EJ, Jinnah HA, Kozak CA, Wilson MC (1992) Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 12:2865–2874

    PubMed  CAS  Google Scholar 

  • Hess EJ, Collins KA, Copeland NG, Jenkins NA, Wilson MC (1994) Deletion map of the coloboma (Cm) locus on mouse chromosome 2. Genomics 21:257–261

    Article  PubMed  CAS  Google Scholar 

  • Hess EJ, Rogan PK, Domoto M, Tinker DE, Ladda RL, Ramer JC (1995) Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant Coloboma. Am J Med Genet 60:573–579

    Article  PubMed  CAS  Google Scholar 

  • Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16:3104–3111

    PubMed  CAS  Google Scholar 

  • Heyser CJ, Wilson MC, Gold LH (1995) Coloboma hyperactive mutant exhibits delayed neurobehavioral developmental milestones. Brain Res Dev Brain Res 89:264–269

    Article  PubMed  CAS  Google Scholar 

  • Holets VR (1990) The anatomy and function of noradrenaline in the mammalian brain. In: Heal DJ, Mardsen CA (eds) Pharmacology of noradrenaline in the central nervous system. Oxford Medical Publications, Oxford, pp 1–27

    Google Scholar 

  • Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D (1990) Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Arch Neurol 47:919–926

    PubMed  CAS  Google Scholar 

  • Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D, Lyytinen H (1991) Corpus callosum morphology in attention deficit-hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil 24:141–146

    Article  PubMed  CAS  Google Scholar 

  • Hynd GW, Hern KL, Novey ES, Eliopulos D, Marshall R, Gonzalez JJ, Voeller KK (1993) Attention deficit-hyperactivity disorder and asymmetry of the caudate nucleus. J Child Neurol 8:339–347

    Article  PubMed  CAS  Google Scholar 

  • Jaber M, Jones SR, Bosse B, Giros B, Caron MG (1996) Dramatic regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Soc Neurosci Abstr 22:1576

    Google Scholar 

  • Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B, Bloch B, Caron MG (1999) Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci 11:3499–3511

    Article  PubMed  CAS  Google Scholar 

  • Jones MD, Hess EJ (2003) Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav 75:209–216

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Garris PA, Kilts CD, Wightman RM (1995) Comparison of dopamine uptake in the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens of the rat. J Neurochem 64:2581–2589

    PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998a) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95:4029–4034

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998b) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    PubMed  CAS  Google Scholar 

  • Jones MD, Williams ME, Hess EJ (2001a) Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav 68:669–676

    Article  PubMed  CAS  Google Scholar 

  • Jones MD, Williams ME, Hess EJ (2001b) Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res Mol Brain Res 96:114–121

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Frohna PA, Neal-Beliveau BS (1996) Functional and molecular differentiation of the dopamine system induced by neonatal denervation. Neurosci Biobehav Rev 20:453–486

    Article  PubMed  CAS  Google Scholar 

  • Kelsoe JR, Ginns EI, Egeland JA, Gerhard DS, Goldstein AM, Bale SJ, Pauls DL, Long RT, Kidd KK, Conte G (1989) Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish. Nature 342:238–243

    Article  PubMed  CAS  Google Scholar 

  • Knight RT, Scabini D, Woods DL (1989) Prefrontal cortex gating of auditory transmission in humans. Brain Res 504:338–342

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM, Reader TA, Descarries L (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. J Neurochem 70:889–898

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R (2008) Pharmacological models of ADHD. J Neural Transm 115:287–298

    Article  PubMed  CAS  Google Scholar 

  • Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K (2000) Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285:107–110

    Article  PubMed  CAS  Google Scholar 

  • Kruesi MJ, Rapoport JL, Hamburger S, Hibbs E, Potter WZ, Lenane M, Brown GL (1990) Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch Gen Psychiatry 47:419–426

    PubMed  CAS  Google Scholar 

  • Kustanovich V, Ishii J, Crawford L, Yang M, McGough JJ, McCracken JT, Smalley SL, Nelson SF (2004) Transmission disequilibrium testing of dopamine-related candidate gene polymorphisms in ADHD: confirmation of association of ADHD with DRD4 and DRD5. Mol Psychiatry 9:711–717

    PubMed  CAS  Google Scholar 

  • Lahmame A, del Arco C, Pazos A, Yritia M, Armario A (1997) Are Wistar-Kyoto rats a genetic animal model of depression resistant to antidepressants? Eur J Pharmacol 337:115–123

    Article  PubMed  CAS  Google Scholar 

  • LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL (1996) Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1:121–124

    PubMed  CAS  Google Scholar 

  • Langleben DD, Acton PD, Austin G, Elman I, Krikorian G, Monterosso JR, Portnoy O, Ridlehuber HW, Strauss HW (2002) Effects of methylphenidate discontinuation on cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. J Nucl Med 43:1624–1629

    PubMed  CAS  Google Scholar 

  • Langley K, Marshall L, Van den BM, Thomas H, Owen M, O’Donovan M, Thapar A (2004) Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psychiatry 161:133–138

    Article  PubMed  Google Scholar 

  • Laucht M, Esser G, Baving L, Gerhold M, Hoesch I, Ihle W, Steigleider P, Stock B, Stoehr RM, Weindrich D, Schmidt MH (2000) Behavioral sequelae of perinatal insults and early family adversity at 8 years of age. J Am Acad Child Adolesc Psychiatry 39:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, Craig DW, Romanos J, Heine M, Meyer J, Freitag C, Warnke A, Romanos M, Schafer H, Walitza S, Reif A, Stephan DA, Jacob C (2008) Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 115:1573–1585

    Article  PubMed  CAS  Google Scholar 

  • Levin PM (1938) Restlessness in children. Archives of Neurology and Psychiatry 39:764–770

    Google Scholar 

  • Levy F, Hay D (2001) Attention, genes, and attention-deficit hyperactivity disorder. Psychology Press, Philadelphia

    Google Scholar 

  • Li D, Sham PC, Owen MJ, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15:2276–2284

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Lu G, Antonio GE, Mak YT, Rudd JA, Fan M, Yew DT (2007) The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem Int 50:848–857

    Article  PubMed  CAS  Google Scholar 

  • Lipp HP, Wahlsten D (1992) Absence of the corpus callosum. In: Driscoll P (ed) Genetically defined animal models of neurobehavioural dysfunctions. Birkhäuser, Boston, pp 217–252

    Google Scholar 

  • Lipp HP, Waanders R, Wolfer DP (1990) A new mouse model of partial and compleat agenesis of the corpus callosum. Soc Neurosci Abstr 16:925

    Google Scholar 

  • Lou HC, Henriksen L, Bruhn P (1984) Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch Neurol 41:825–829

    PubMed  CAS  Google Scholar 

  • Lou HC, Henriksen L, Bruhn P, Borner H, Nielsen JB (1989) Striatal dysfunction in attention deficit and hyperkinetic disorder. Arch Neurol 46:48–52

    PubMed  CAS  Google Scholar 

  • Lou HC, Henriksen L, Bruhn P (1990) Focal cerebral dysfunction in developmental learning disabilities. Lancet 335:8–11

    Article  PubMed  CAS  Google Scholar 

  • Luthman J, Fredriksson A, Lewander T, Jonsson G, Archer T (1989) Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology (Berl) 99:550–557

    Article  CAS  Google Scholar 

  • Luthman J, Brodin E, Sundstrom E, Wiehager B (1990) Studies on brain monoamine and neuropeptide systems after neonatal intracerebroventricular 6-hydroxydopamine treatment. Int J Dev Neurosci 8:549–560

    Article  PubMed  CAS  Google Scholar 

  • Luthman J, Bassen M, Fredriksson A, Archer T (1997) Functional changes induced by neonatal cerebral 6-hydroxydopamine treatment: effects of dose levels on behavioral parameters. Behav Brain Res 82:213–221

    Article  PubMed  CAS  Google Scholar 

  • Magara F, Ricceri L, Wolfer DP, Lipp HP (2000) The acallosal mouse strain I/LnJ: a putative model of ADHD? Neurosci Biobehav Rev 24:45–50

    Article  PubMed  CAS  Google Scholar 

  • Mattes JA (1980) The role of frontal lobe dysfunction in childhood hyperkinesis. Compr Psychiatry 21:358–369

    Article  PubMed  CAS  Google Scholar 

  • McCarty R, Kirby RF (1982) Spontaneous hypertension and open-field behavior. Behav Neural Biol 34:450–452

    Article  PubMed  CAS  Google Scholar 

  • McCracken JT, Smalley SL, McGough JJ, Crawford L, Del’Homme M, Cantor RM, Liu A, Nelson SF (2000) Evidence for linkage of a tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4) with attention deficit hyperactivity disorder (ADHD). Mol Psychiatry 5:531–536

    Article  PubMed  CAS  Google Scholar 

  • McDonald MP, Wong R, Goldstein G, Weintraub B, Cheng SY, Crawley JN (1998) Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene. Learn Mem 5:289–301

    PubMed  CAS  Google Scholar 

  • McIntosh DE, Mulkins RS, Dean RS (1995) Utilization of maternal perinatal risk indicators in the differential diagnosis of ADHD and UADD children. Int J Neurosci 81:35–46

    Article  PubMed  CAS  Google Scholar 

  • Mefford IN, Potter WZ (1989) A neuroanatomical and biochemical basis for attention deficit disorder with hyperactivity in children: a defect in tonic adrenaline mediated inhibition of locus coeruleus stimulation. Med Hypotheses 29:33–42

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (1997a) Cerebellar output channels. Int Rev Neurobiol 41:61–82

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (1997b) Dentate output channels: motor and cognitive components. Prog Brain Res 114:553–566

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    PubMed  CAS  Google Scholar 

  • Mill J, Curran S, Richards S, Taylor E, Asherson P (2004) Polymorphisms in the dopamine D5 receptor (DRD5) gene and ADHD. Am J Med Genet B Neuropsychiatr Genet 125B:38–42

    Article  PubMed  Google Scholar 

  • Moser MB, Moser EI, Wultz B, Sagvolden T (1988) Component analyses differentiate between exploratory behaviour of spontaneously hypertensive rats and Wistar Kyoto rats in a two-compartment free-exploration open field. Scand J Psychol 29:200–206

    Article  PubMed  CAS  Google Scholar 

  • Mueller K, Daly M, Fischer M, Yinnoutsos CT, Bauer L, Barkley RA (2003) Association of the dopamine beta hydroxylase gene with attention deficit hyperactivity disorder: genetic analysis of the Milwaukee longitudinal study. Am J Med Genet 119B:77–85

    Article  Google Scholar 

  • Myers MM, Whittemore SR, Hendley ED (1981) Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats (SHR). Brain Res 220:325–338

    Article  PubMed  CAS  Google Scholar 

  • Myers MM, Musty RE, Hendley ED (1982) Attenuation of hyperactivity in the spontaneously hypertensive rat by amphetamine. Behav Neural Biol 34:42–54

    Article  PubMed  CAS  Google Scholar 

  • Nakajo S, Tsukada K, Omata K, Nakamura Y, Nakaya K (1993) A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 217:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Noain D, Avale ME, Wedemeyer C, Calvo D, Peper M, Rubinstein M (2006) Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice. Eur J Neurosci 24:2429–2438

    Article  PubMed  Google Scholar 

  • Oades RD, Daniels R, Rascher W (1998) Plasma neuropeptide-Y levels, monoamine metabolism, electrolyte excretion and drinking behavior in children with attention-deficit hyperactivity disorder. Psychiatry Res 80:177–186

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    PubMed  CAS  Google Scholar 

  • Ordway GA (1995) Effect of noradrenergic lesions on subtypes of alpha 2-adrenoceptors in rat brain. J Neurochem 64:1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Papa M, Sellitti S, Sadile AG (2000) Remodeling of neural networks in the anterior forebrain of an animal model of hyperactivity and attention deficits as monitored by molecular imaging probes. Neurosci Biobehav Rev 24:149–156

    Article  PubMed  CAS  Google Scholar 

  • Pare WP (1989) Stress ulcer and open-field behavior of spontaneously hypertensive, normotensive, and Wistar rats. Pavlov J Biol Sci 24:54–57

    PubMed  CAS  Google Scholar 

  • Pliszka SR, McCracken JT, Maas JW (1996) Catecholamines in attention-deficit hyperactivity disorder: current perspectives. J Am Acad Child Adolesc Psychiatry 35:264–272

    Article  PubMed  CAS  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  PubMed  CAS  Google Scholar 

  • Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE, Wilson MC (1997) Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 68:176–186

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Mikkelsen EJ, Ebert MH, Brown GL, Weise VK, Kopin IJ (1978) Urinary catecholamines and amphetamine excretion in hyperactive and normal boys. J Nerv Ment Dis 166:731–737

    Article  PubMed  CAS  Google Scholar 

  • Raskin LA, Shaywitz BA, Anderson GM, Cohen DJ, Teicher MH, Linakis J (1983) Differential effects of selective dopamine, norepinephrine or catecholamine depletion on activity and learning in the developing rat. Pharmacol Biochem Behav 19:743–749

    Article  PubMed  CAS  Google Scholar 

  • Reimherr FW, Wender PH, Ebert MH, Wood DR (1984) Cerebrospinal fluid homovanillic acid and 5-hydroxy-indoleacetic acid in adults with attention deficit disorder, residual type. Psychiatry Res 11:71–78

    Article  PubMed  CAS  Google Scholar 

  • Reja V, Goodchild AK, Pilowsky PM (2002) Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension 40:342–347

    Article  PubMed  CAS  Google Scholar 

  • Rhee SH, Waldman ID, Hay DA, Levy F (1999) Sex differences in genetic and environmental influences on DSM-III-R attention-deficit/hyperactivity disorder. J Abnorm Psychol 108:24–41

    Article  PubMed  CAS  Google Scholar 

  • Roberts DC, Price MT, Fibiger HC (1976) The dorsal tegmental noradrenergic projection: an analysis of its role in maze learning. J Comp Physiol Psychol 90:363–372

    Article  PubMed  CAS  Google Scholar 

  • Romanos M, Freitag C, Jacob C, Craig DW, Dempfle A, Nguyen TT, Halperin R, Walitza S, Renner TJ, Seitz C, Romanos J, Palmason H, Reif A, Heine M, Windemuth-Kieselbach C, Vogler C, Sigmund J, Warnke A, Schafer H, Meyer J, Stephan DA, Lesch KP (2008) Genome-wide linkage analysis of ADHD using high-density SNP arrays: novel loci at 5q13.1 and 14q12. Mol Psychiatry 13:522–530

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET (1999) Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 156:891–896

    PubMed  CAS  Google Scholar 

  • Russell VA (2000) The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev 24:133–136

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, Wiggins TM (2000) Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis 15:297–304

    Article  PubMed  CAS  Google Scholar 

  • Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J (1995) Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder–the spontaneously hypertensive rat. Brain Res 676:343–351

    Article  PubMed  CAS  Google Scholar 

  • Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J (1998) Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of Attention-Deficit Hyperactivity Disorder. Behav Brain Res 94:163–171

    Article  PubMed  CAS  Google Scholar 

  • Russell V, Allie S, Wiggins T (2000a) Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 117:69–74

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, de Villiers AS, Sagvolden T, Lamm MC, Taljaard JJ (2000b) Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit/hyperactivity disorder—the spontaneously hypertensive rat. Brain Res Bull 53:187–192

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, Sagvolden T, Johansen EB (2005) Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 1:9

    Article  PubMed  CAS  Google Scholar 

  • Sadile AG (1993) What can genetic models tell us about behavioral plasticity? Rev Neurosci 4:287–303

    PubMed  CAS  Google Scholar 

  • Sadile AG, Lamberti C, Siegfried B, Welzl H (1993) Circadian activity, nociceptive thresholds, nigrostriatal and mesolimbic dopaminergic activity in the Naples high- and low-excitability rat lines. Behav Brain Res 55:17–27

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Metzger MA, Schiorbeck HK, Rugland AL, Spinnangr I, Sagvolden G (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol 58:103–112

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Pettersen MB, Larsen MC (1993) Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 54:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Aase H, Zeiner P, Berger D (1998) Altered reinforcement mechanisms in attention-deficit/hyperactivity disorder. Behav Brain Res 94:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1239–1247

    Article  PubMed  Google Scholar 

  • Schaefer CF, Brackett DJ, Gunn CG, Wilson MF (1978) Behavioral hyperreactivity in the spontaneously hypertensive rat compared to its normotensive progenitor. Pavlov J Biol Sci 13:211–216

    PubMed  CAS  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    PubMed  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579

    Article  PubMed  Google Scholar 

  • Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331

    Article  PubMed  CAS  Google Scholar 

  • Searle AJ (1966) New mutants, vol 2: Colobomba. Mouse Newsl 35:27

    Google Scholar 

  • Semrud-Clikeman M, Filipek PA, Biederman J, Steingard R, Kennedy D, Renshaw P, Bekken K (1994) Attention-deficit hyperactivity disorder: magnetic resonance imaging morphometric analysis of the corpus callosum. J Am Acad Child Adolesc Psychiatry 33:875–881

    Article  PubMed  CAS  Google Scholar 

  • Semrud-Clikeman M, Steingard RJ, Filipek P, Biederman J, Bekken K, Renshaw PF (2000) Using MRI to examine brain-behavior relationships in males with attention deficit disorder with hyperactivity. J Am Acad Child Adolesc Psychiatry 39:477–484

    Article  PubMed  CAS  Google Scholar 

  • Senior SL, Ninkina N, Deacon R, Bannerman D, Buchman VL, Cragg SJ, Wade-Martins R (2008) Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur J Neurosci 27:947–957

    Article  PubMed  Google Scholar 

  • Shaywitz BA, Klopper JH, Yager RD, Gordon JW (1976a) Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine. Nature 261:153–155

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, Yager RD, Klopper JH (1976b) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191:305–308

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, Cohen DJ, Bowers MB Jr (1977) CSF monoamine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine. A preliminary report. J Pediatr 90:67–71

    Article  PubMed  CAS  Google Scholar 

  • Shekim WO, Dekirmenjian H, Chapel JL (1977) Urinary catecholamine metabolites in hyperkinetic boys treated with d-amphetamine. Am J Psychiatry 134:1276–1279

    PubMed  CAS  Google Scholar 

  • Shekim WO, Dekirmenjian H, Chapel JL (1979) Urinary MHPG excretion in minimal brain dysfunction and its modification by d-amphetamine. Am J Psychiatry 136:667–671

    PubMed  CAS  Google Scholar 

  • Shekim WO, Javaid J, Davis JM, Bylund DB (1983) Urinary MHPG and HVA excretion in boys with attention deficit disorder and hyperactivity treated with d-amphetamine. Biol Psychiatry 18:707–714

    PubMed  CAS  Google Scholar 

  • Shekim WO, Sinclair E, Glaser R, Horwitz E, Javaid J, Bylund DB (1987) Norepinephrine and dopamine metabolites and educational variables in boys with attention deficit disorder and hyperactivity. J Child Neurol 2:50–56

    Article  PubMed  CAS  Google Scholar 

  • Shetty T, Chase TN (1976) Central monoamines and hyperkinase of childhood. Neurology 26:1000–1002

    PubMed  CAS  Google Scholar 

  • Sieg KG, Gaffney GR, Preston DF, Hellings JA (1995) SPECT brain imaging abnormalities in attention deficit hyperactivity disorder. Clin Nucl Med 20:55–60

    Article  PubMed  CAS  Google Scholar 

  • Siesser WB, Zhao J, Miller LR, Cheng SY, McDonald MP (2006) Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav 5:282–297

    Article  PubMed  CAS  Google Scholar 

  • Simson PE, Weiss JM (1987) Alpha-2 receptor blockade increases responsiveness of locus coeruleus neurons to excitatory stimulation. J Neurosci 7:1732–1740

    PubMed  CAS  Google Scholar 

  • Smidt J, Heiser P, Dempfle A, Konrad K, Hemminger U, Kathofer A, Halbach A, Strub J, Grabarkiewicz J, Kiefl H, Linder M, Knolker U, Warnke A, Remschmidt H, Herpertz-Dahlmann B, Hebebrand J (2003) Formal genetic findings in attention-deficit/hyperactivity-disorder. Fortschr Neurol Psychiatr 71:366–377

    Article  PubMed  CAS  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 94:127–152

    Article  PubMed  CAS  Google Scholar 

  • Son GH, Chung S, Geum D, Kang SS, Choi WS, Kim K, Choi S (2007) Hyperactivity and alteration of the midbrain dopaminergic system in maternally stressed male mice offspring. Biochem Biophys Res Commun 352:823–829

    Article  PubMed  CAS  Google Scholar 

  • Speiser Z, Korczyn AD, Teplitzky I, Gitter S (1983) Hyperactivity in rats following postnatal anoxia. Behav Brain Res 7:379–382

    Article  PubMed  CAS  Google Scholar 

  • Speiser Z, Amitzi-Sonder J, Gitter S, Cohen S (1988) Behavioral differences in the developing rat following postnatal anoxia or postnatally injected AF-64A, a cholinergic neurotoxin. Behav Brain Res 30:89–94

    Article  PubMed  CAS  Google Scholar 

  • Spivak B, Vered Y, Yoran-Hegesh R, Averbuch E, Mester R, Graf E, Weizman A (1999) Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity disorder. Acta Psychiatr Scand 99:300–304

    Article  PubMed  CAS  Google Scholar 

  • Stachowiak MK, Bruno JP, Snyder AM, Stricker EM, Zigmond MJ (1984) Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Res 291:164–167

    Article  PubMed  CAS  Google Scholar 

  • Stefanatos GA, Wasserstein J (2001) Attention deficit/hyperactivity disorder as a right hemisphere syndrome. Selective literature review and detailed neuropsychological case studies. Ann N Y Acad Sci 931:172–195

    Article  PubMed  CAS  Google Scholar 

  • Steffensen SC, Wilson MC, Henriksen SJ (1996) Coloboma contiguous gene deletion encompassing Snap alters hippocampal plasticity. Synapse 22:281–289

    Article  PubMed  CAS  Google Scholar 

  • Stein DJ, Hollander E, Liebowitz MR (1993) Neurobiology of impulsivity and the impulse control disorders. J Neuropsychiatry Clin Neurosci 5:9–17

    PubMed  CAS  Google Scholar 

  • Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, Wigal T, Lerner M, Williams L, LaHoste GJ, Wigal S (1998) Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Mol Psychiatry 3:38–41

    Article  PubMed  CAS  Google Scholar 

  • Teicher MH, Barber NI, Reichheld JH, Baldessarini RJ, Finklestein SP (1986) Selective depletion of cerebral norepinephrine with 6-hydroxydopamine and GBR-12909 in neonatal rat. Brain Res 395:124–128

    Article  PubMed  CAS  Google Scholar 

  • Teicher MH, Anderson CM, Polcari A, Glod CA, Maas LC, Renshaw PF (2000) Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat Med 6:470–473

    Article  PubMed  CAS  Google Scholar 

  • Thompson CC, Potter GB (2000) Thyroid hormone action in neural development. Cereb Cortex 10:939–945

    Article  PubMed  CAS  Google Scholar 

  • Todd RD, Neuman RJ, Lobos EA, Jong YJ, Reich W, Heath AC (2001) Lack of association of dopamine D4 receptor gene polymorphisms with ADHD subtypes in a population sample of twins. Am J Med Genet 105:432–438

    Article  PubMed  CAS  Google Scholar 

  • Totterdell S, Meredith GE (2005) Localization of alpha-synuclein to identified fibers and synapses in the normal mouse brain. Neuroscience 135:907–913

    Article  PubMed  CAS  Google Scholar 

  • Totterdell S, Hanger D, Meredith GE (2004) The ultrastructural distribution of alpha-synuclein-like protein in normal mouse brain. Brain Res 1004:61–72

    Article  PubMed  CAS  Google Scholar 

  • Towle AC, Criswell HE, Maynard EH, Lauder JM, Joh TH, Mueller RA, Breese GR (1989) Serotonergic innervation of the rat caudate following a neonatal 6-hydroxydopamine lesion: an anatomical, biochemical and pharmacological study. Pharmacol Biochem Behav 34:367–374

    Article  PubMed  CAS  Google Scholar 

  • Tsuda K, Tsuda S, Masuyama Y, Goldstein M (1990) Norepinephrine release and neuropeptide Y in medulla oblongata of spontaneously hypertensive rats. Hypertension 15:784–790

    PubMed  CAS  Google Scholar 

  • Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 95:14494–14499

    Article  PubMed  CAS  Google Scholar 

  • van der Kooij MA, Glennon JC (2007) Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav Rev 31:597–618

    Article  PubMed  CAS  Google Scholar 

  • Viggiano D, Sadile AG (2000) Hypertrophic A10 dopamine neurones in a rat model of attention-deficit hyperactivity disorder (ADHD). Neuroreport 11:3677–3680

    Article  PubMed  CAS  Google Scholar 

  • Viggiano D, Grammatikopoulos G, Sadile AG (2002a) A morphometric evidence for a hyperfunctioning mesolimbic system in an animal model of ADHD. Behav Brain Res 130:181–189

    Article  PubMed  CAS  Google Scholar 

  • Viggiano D, Vallone D, Welzl H, Sadile AG (2002b) The Naples high- and low-excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system. Behav Genet 32:315–333

    Article  PubMed  Google Scholar 

  • Viggiano D, Ruocco LA, Pignatelli M, Grammatikopoulos G, Sadile AG (2003a) Prenatal elevation of endocannabinoids corrects the unbalance between dopamine systems and reduces activity in the Naples High Excitability rats. Neurosci Biobehav Rev 27:129–139

    Article  PubMed  CAS  Google Scholar 

  • Viggiano D, Vallone D, Ruocco LA, Sadile AG (2003b) Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev 27:683–689

    Article  PubMed  CAS  Google Scholar 

  • Waldman ID, Rowe DC, Abramowitz A, Kozel ST, Mohr JH, Sherman SL, Cleveland HH, Sanders ML, Gard JM, Stever C (1998) Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am J Hum Genet 63:1767–1776

    Article  PubMed  CAS  Google Scholar 

  • Wang YM, Xu F, Gainetdinov RR, Caron MG (1999) Genetic approaches to studying norepinephrine function: knockout of the mouse norepinephrine transporter gene. Biol Psychiatry 46:1124–1130

    Article  PubMed  CAS  Google Scholar 

  • Weiss RE, Refetoff S (2000) Resistance to thyroid hormone. Rev Endocr Metab Disord 1:97–108

    Article  PubMed  CAS  Google Scholar 

  • Weiss RE, Stein MA, Trommer B, Refetoff S (1993) Attention-deficit hyperactivity disorder and thyroid function. J Pediatr 123:539–545

    Article  PubMed  CAS  Google Scholar 

  • Wender PH, Epstein RS, Kopin IJ, Gordon EK (1971) Urinary monoamine metabolites in children with minimal brain dysfunction. Am J Psychiatry 127:1411–1415

    PubMed  CAS  Google Scholar 

  • Willner P (1991) Behavioural models in psychopharmacology. In: Willner P (ed) Cambridge University Press

  • Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24:51–57

    Article  PubMed  CAS  Google Scholar 

  • Winsberg BG, Comings DE (1999) Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry 38:1474–1477

    Article  PubMed  CAS  Google Scholar 

  • Wyss JM, Fisk G, Van Groen T (1992) Impaired learning and memory in mature spontaneously hypertensive rats. Brain Res 592:135–140

    Article  PubMed  CAS  Google Scholar 

  • Yeo RA, Hill DE, Campbell RA, Vigil J, Petropoulos H, Hart B, Zamora L, Brooks WM (2003) Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 42:303–310

    Article  PubMed  Google Scholar 

  • Zametkin AJ, Nordahl TE, Gross M, King AC, Semple WE, Rumsey J, Hamburger S, Cohen RM (1990) Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med 323:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Zametkin AJ, Liebenauer LL, Fitzgerald GA, King AC, Minkunas DV, Herscovitch P, Yamada EM, Cohen RM (1993) Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch Gen Psychiatry 50:333–340

    PubMed  CAS  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez TE, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Tarazi FI, Baldessarini RJ (2001) Role of dopamine D(4) receptors in motor hyperactivity induced by neonatal 6-hydroxydopamine lesions in rats. Neuropsychopharmacology 25:624–632

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Davids E, Tarazi FI, Baldessarini RJ (2002a) Serotonin transporter binding increases in caudate-putamen and nucleus accumbens after neonatal 6-hydroxydopamine lesions in rats: implications for motor hyperactivity. Brain Res Dev Brain Res 137:135–138

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Tarazi FI, Davids E, Baldessarini RJ (2002b) Plasticity of dopamine D4 receptors in rat forebrain: temporal association with motor hyperactivity following neonatal 6-hydroxydopamine lesioning. Neuropsychopharmacology 26:625–633

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Dempfle A, Arcos-Burgos M, Bakker SC, Banaschewski T, Biederman J, Buitelaar J, Castellanos FX, Doyle A, Ebstein RP, Ekholm J, Forabosco P, Franke B, Freitag C, Friedel S, Gill M, Hebebrand J, Hinney A, Jacob C, Lesch KP, Loo SK, Lopera F, McCracken JT, McGough JJ, Meyer J, Mick E, Miranda A, Muenke M, Mulas F, Nelson SF, Nguyen TT, Oades RD, Ogdie MN, Palacio JD, Pineda D, Reif A, Renner TJ, Roeyers H, Romanos M, Rothenberger A, Schafer H, Sergeant J, Sinke RJ, Smalley SL, Sonuga-Barke E, Steinhausen HC, van der ME, Walitza S, Warnke A, Lewis CM, Faraone SV, Asherson P P (2008) Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatry Genet 147B:1392–1398

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4