A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11910-017-0718-1 below:

Future Directions in Imaging Neurodegeneration

  • Knopman DS, Jack Jr CR, Wiste HJ, et al. Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia. Neurology. 2016;87:691–8.

    Article  CAS  PubMed  Google Scholar 

  • Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1–15. e11-14.

    Article  PubMed  Google Scholar 

  • Scholl M, Lockhart SN, Schonhaut DR, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89:971–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79:110–9.

    Article  PubMed  Google Scholar 

  • Sanchez-Juan P, Ghosh PM, Hagen J, et al. Practical utility of amyloid and FDG-PET in an academic dementia center. Neurology. 2014;82:230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling RA, Rentz DM, Johnson KA, et al. The A4 study: stopping AD before symptoms begin? Sci Transl Med. 2014;6:228fs213.

    Article  CAS  Google Scholar 

  • Mungas D, Tractenberg R, Schneider JA, et al. A 2-process model for neuropathology of Alzheimer’s disease. Neurobiol Aging. 2014;35:301–8.

    Article  CAS  PubMed  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • •• Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces abeta plaques in Alzheimer’s disease. Nature. 2016;537:50–6. The first report accomplishing amyloid removal from the brain of patients with mild cognitive impairment due to AD and an associated improvement in some cognitive scores.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jin H, Padakanti PK, et al. Radiosynthesis and in vivo evaluation of two PET radioligands for imaging alpha-synuclein. Appl Sci (Basel). 2014;4:66–78.

    Article  CAS  Google Scholar 

  • ALS Association (2016) ALS find a cure. http://www.alsa.org/news/media/press-releases/grand-challenge-generation-020816.html.

  • Jack Jr CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67.

    Article  CAS  PubMed  Google Scholar 

  • Yau WY, Tudorascu DL, McDade EM, et al. Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2015;14:804–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • • Petersen RC, Wiste HJ, Weigand SD, et al. Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurol. 2016;73:85–92. This is a large longitudinal study in healthy elderly at the Mayo Clinic showing how a positive abeta PET study increases the risk of developing cognitive impairment.

    Article  PubMed  PubMed Central  Google Scholar 

  • • Burnham SC, Bourgeat P, Dore V, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 2016;15:1044–53. This is a large longitudinal study in healthy elderly at Melbourne showing how a positive abeta PET study increases the risk of developing cognitive impairment.

    Article  PubMed  Google Scholar 

  • Jack Jr CR, Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos SJ, Xiong C, Visser PJ, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12:957–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Su Y, Blazey TM, Owen CJ, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: results from the DIAN study group. PLoS One. 2016;11, e0152082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosconi L, Rinne JO, Tsui WH, et al. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer’s parents. Neurobiol Aging. 2013;34:22–34.

    Article  CAS  PubMed  Google Scholar 

  • Orban P, Madjar C, Savard M, et al. Test-retest resting-state fMRI in healthy elderly persons with a family history of Alzheimer’s disease. Sci Data. 2015;2:150043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bron EE, Steketee RM, Houston GC, et al. Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia. Hum Brain Mapp. 2014;35:4916–31.

    Article  PubMed  Google Scholar 

  • Andrews KA, Frost C, Modat M, et al. Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis. Neurobiol Aging. 2016;39:99–107.

    Article  CAS  PubMed  Google Scholar 

  • • Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8. Recent genetic data implying inflammation-related gene variants as risk factors for Alzheimer’s disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • •• Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27. Recent genetic data implying inflammation-related gene variants as risk factors for Alzheimer’s disease.

    Article  CAS  PubMed  Google Scholar 

  • • Bradshaw EM, Chibnik LB, Keenan BT, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–50. Recent genetic data implying inflammation-related gene variants as risk factors for Alzheimer’s disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, et al. Existing Pittsburgh compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 2015;138:2020–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray ME, Lowe VJ, Graff-Radford NR, et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain. 2015;138:1370–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi SR, Schneider JA, Bennett DA, et al. Correlation of amyloid PET ligand florbetapir F 18 binding with abeta aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord. 2012;26:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk DA, Grachev ID, Buckley C, et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011;68:1398–403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer disease: phase 3 study. Alzheimers Dement. 2015;11:964–72.

    Article  PubMed  Google Scholar 

  • • Palmqvist S, Zetterberg H, Mattsson N, et al. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015;85:1240–9. This study shows the good correlation between abeta CSF and abeta PET in the early stages of the AD process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack Jr CR, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;131:665–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Villemagne VL, Pike KE, Chetelat G, et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chetelat G, Villemagne VL, Pike KE, et al. Relationship between memory performance and beta-amyloid deposition at different stages of Alzheimer’s disease. Neurodegener Dis. 2012;10:141–4.

    Article  CAS  PubMed  Google Scholar 

  • Vlassenko AG, Mintun MA, Xiong C, et al. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol. 2011;70:857–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YY, Laws SM, Villemagne VL, et al. Abeta-related memory decline in APOE epsilon4 noncarriers: implications for Alzheimer disease. Neurology. 2016;86:1635–42.

    Article  CAS  PubMed  Google Scholar 

  • Landau SM, Marks SM, Mormino EC, et al. Association of lifetime cognitive engagement and low beta-amyloid deposition. Arch Neurol. 2012;69:623–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vemuri P, Lesnick TG, Przybelski SA, et al. Effect of intellectual enrichment on AD biomarker trajectories: longitudinal imaging study. Neurology. 2016;86:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown BM, Rainey-Smith SR, Villemagne VL, et al. The relationship between sleep quality and brain amyloid burden. Sleep. 2016;39:1063–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Landau SM, Fero A, et al. Comparison of visual and quantitative florbetapir F 18 positron emission tomography analysis in predicting mild cognitive impairment outcomes. JAMA Neurol. 2015;72:1183–90.

    Article  PubMed  Google Scholar 

  • Kantarci K, Lowe V, Przybelski SA, et al. APOE modifies the association between Abeta load and cognition in cognitively normal older adults. Neurology. 2012;78:232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YY, Villemagne VL, Laws SM, et al. BDNF Val66Met, Abeta amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobiol Aging. 2013;34:2457–64.

    Article  CAS  PubMed  Google Scholar 

  • Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano GE, Sabbagh MN, Sue LI, et al. Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis. 2014;42:813–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vellas B, Carrillo MC, Sampaio C, et al. Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimers Dement. 2013;9:438–44.

    Article  PubMed  Google Scholar 

  • Petersen RC, Aisen P, Boeve BF, et al. Mild cognitive impairment due to alzheimer’s disease in the community. Ann Neurol. 2013;74:199–208.

    PubMed  PubMed Central  Google Scholar 

  • Mathis CA, Kuller LH, Klunk WE, et al. In vivo assessment of amyloid-beta deposition in nondemented very elderly subjects. Ann Neurol. 2013;73:751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monsell SE, Mock C, Roe CM, et al. Comparison of symptomatic and asymptomatic persons with Alzheimer disease neuropathology. Neurology. 2013;80:2121–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson PT, Head E, Schmitt FA, et al. Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 2011;121:571–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Nievas BG, Stein TD, Tai HC, et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain. 2013;136:2510–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperling R, Salloway S, Brooks DJ, et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 2012;11:241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin J, Kepe V, Barrio JR, et al. The merits of FDDNP-PET imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26:135–45.

    PubMed  Google Scholar 

  • Jonasson M, Wall A, Chiotis K, et al. Tracer kinetic analysis of (S)-(1)(8)F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med. 2016;57:574–81.

    Article  PubMed  Google Scholar 

  • Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68.

    CAS  PubMed  Google Scholar 

  • Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.

    Article  CAS  PubMed  Google Scholar 

  • Villemagne VL, Fodero-Tavoletti MT, Masters CL, et al. Tau imaging: early progress and future directions. Lancet Neurol. 2015;14:114–24.

    Article  PubMed  Google Scholar 

  • Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43:1686–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada R, Okamura N, Furumoto S, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14.

    Article  CAS  PubMed  Google Scholar 

  • Pascual B, Masdeu JC. Tau, amyloid, and hypometabolism in the logopenic variant of primary progressive aphasia. Neurology. 2016;86:487–8.

    Article  PubMed  Google Scholar 

  • Pascual B, Rockers E, Bajaj S, et al. Older healthy people have increased vascular permeability in regions showing “off-target” [18F]AV-1451 uptake. Alzheimer Assoc Int Conf. 2016;Abstract a9714.

  • Ikonomovic MD, Abrahamson EE, Price JC, et al. [F-18]AV-1451 positron emission tomography retention in choroid plexus: More than “off-target” binding. Ann Neurol. 2016;80:307–8.

    Article  PubMed  Google Scholar 

  • Marquie M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78:787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen AK, Knudsen K, Lillethorup TP, et al. In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET. Brain. 2016;139:2039–49.

    Article  PubMed  Google Scholar 

  • • Ossenkoppele R, Schonhaut DR, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139:1551–67. This is an early study showing a good correlation between the topography of tau deposition in vivo and the clinical phenotype.

    Article  PubMed  Google Scholar 

  • Lowe VJ, Curran G, Fang P, et al. An autoradiographic evaluation of AV-1451 tau PET in dementia. Acta Neuropathol Commun. 2016;4:58. doi:10.1186/s40478-016-0315-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith R, Schain M, Nilsson C, et al. Increased basal ganglia binding of 18F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord. 2016. doi:10.1002/mds.26813.

    PubMed Central  Google Scholar 

  • Josephs KA, Whitwell JL, Tacik P, et al. [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 2016; (in press, on line)

  • Taniguchi-Watanabe S, Arai T, Kametani F, et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 2016;131:267–80.

    Article  CAS  PubMed  Google Scholar 

  • Smith R, Puschmann A, Scholl M, et al. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain. 2016;139:2372–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Benzinger TL, Su Y, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and tauopathy. JAMA Neurol. 2016;73:1070–7.

    Article  PubMed  Google Scholar 

  • Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finnema SJ, Nabulsi NB, Eid T, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra396.

    Article  Google Scholar 

  • O’Brien JT, Firbank MJ, Davison C, et al. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med. 2014;55:1959–65.

    Article  PubMed  CAS  Google Scholar 

  • Herholz K. Guidance for reading FDG PET scans in dementia patients. Q J Nucl Med Mol Imaging. 2014;58:332–43.

    CAS  PubMed  Google Scholar 

  • Chen K, Ayutyanont N, Langbaum JB, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage. 2011;56:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozoki, AC, Korolev, IO, Davis, NC, et al. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: A DTI/FDG-PET Study. Hum Brain Mapp. 2011

  • Drzezga A, Becker JA, Van Dijk KR, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134:1635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caroli A, Prestia A, Chen K, et al. Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med. 2012;53:592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CY, Thie J, Gaskill M, et al. A statistical investigation of normal regional intra-subject heterogeneity of brain metabolism and perfusion by F-18 FDG and O-15 H2O PET imaging. BMC Nucl Med. 2006;6:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology. 2011;77:1977–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchbinder BR. Functional magnetic resonance imaging. Handb Clin Neurol. 2016;135:61–92.

    Article  PubMed  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54.

    Article  PubMed  Google Scholar 

  • Jacobs HI, Van Boxtel MP, Heinecke A, et al. Functional integration of parietal lobe activity in early Alzheimer disease. Neurology. 2012;78:352–60.

    Article  CAS  PubMed  Google Scholar 

  • Bondi MW, Houston WS, Eyler LT, et al. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64:501–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343:450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi MA, Schmitz TW, Ries ML, et al. fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: risk factors for Alzheimer’s disease. Neuropsychologia. 2008;46:1667–78.

    Article  PubMed  Google Scholar 

  • Mondadori CR, de Quervain DJ, Buchmann A, et al. Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cereb Cortex. 2007;17:1934–47.

    Article  PubMed  Google Scholar 

  • Nichols LM, Masdeu JC, Mattay VS, et al. Interactive effect of apolipoprotein E genotype and age on hippocampal activation during memory processing in healthy adults. Arch Gen Psychiatry. 2012;69:804–13.

    Article  CAS  PubMed  Google Scholar 

  • Dickerson BC, Salat DH, Bates JF, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol. 2004;56:27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien JL, O’Keefe KM, LaViolette PS, et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology. 2010;74:1969–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masdeu J, Aronson M. CT findings in early dementia. The Gerontologist. 1985;25:82.

    Google Scholar 

  • Jack Jr CR, Knopman DS, Chetelat G, et al. Suspected non-Alzheimer disease pathophysiology—concept and controversy. Nat Rev Neurol. 2016;12:117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiman EM, Quiroz YT, Fleisher AS, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 2012;11:1048–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apostolova LG, Hwang KS, Medina LD, et al. Cortical and hippocampal atrophy in patients with autosomal dominant familial Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;32:118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caroli A, Prestia A, Galluzzi S, et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): prediction of progression. Neurology. 2015;84:508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens P, Fox N, Barkhof F, et al. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1:13–21.

    Article  PubMed  Google Scholar 

  • Kloppel S, Stonnington CM, Barnes J, et al. Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. Brain. 2008;131:2969–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolz R, Julkunen V, Koikkalainen J, et al. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS One. 2011;6:e25446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua X, Leow AD, Parikshak N, et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage. 2008;43:458–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heister D, Brewer JB, Magda S, et al. Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology. 2011;77:1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitwell JL, Dickson DW, Murray ME, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol. 2012;11:868–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringman JM, O’Neill J, Geschwind D, et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain. 2007;130:1767–76.

    Article  PubMed  Google Scholar 

  • Smith CD, Chebrolu H, Andersen AH, et al. White matter diffusion alterations in normal women at risk of Alzheimer’s disease. Neurobiol Aging. 2010;31:1122–31.

    Article  PubMed  Google Scholar 

  • Fortea J, Sala-Llonch R, Bartres-Faz D, et al. Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis. 2010;22:909–22.

    CAS  PubMed  Google Scholar 

  • Kim WH, Adluru N, Chung MK, et al. Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer’s disease. Neuroimage. 2015;118:103–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Douaud G, Jbabdi S, Behrens TE, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage. 2011;55:880–90.

    Article  PubMed  Google Scholar 

  • Wee CY, Yap PT, Zhang D, et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage. 2012;59:2045–56.

    Article  PubMed  Google Scholar 

  • O’Dwyer L, Lamberton F, Bokde AL, et al. Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One. 2012;7, e32441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferretti MT, Cuello AC. Does a pro-Inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res. 2011;8:164–74.

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Mielke ML, Gomez-Isla T, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol. 2011;179:1373–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoozemans JJ, Rozemuller AJ, van Haastert ES, et al. Neuroinflammation in Alzheimer’s disease wanes with age. J Neuroinflammation. 2011;8:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda J, Zhang MR, Okauchi T, et al. In vivo positron emission tomographic imaging of glial responses to amyloid-beta and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J Neurosci. 2011;31:4720–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okello A, Edison P, Archer HA, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreisl WC, Fujita M, Fujimura Y, et al. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage. 2010;49:2924–32.

    Article  CAS  PubMed  Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–7.

    Article  CAS  PubMed  Google Scholar 

  • Schuitemaker A, Kropholler MA, Boellaard R, et al. Microglial activation in Alzheimer’s disease: an (R)-[(1)(1)C]PK11195 positron emission tomography study. Neurobiol Aging. 2013;34:128–36.

    Article  CAS  PubMed  Google Scholar 

  • Edison P, Archer HA, Gerhard A, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: an 11C (R)PK11195-PET and 11C PIB-PET study. Neurobiol Dis. 2008;32:412–9.

    Article  CAS  PubMed  Google Scholar 

  • Kreisl WC, Lyoo CH, McGwier M, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136:2228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyoo CH, Ikawa M, Liow JS, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med. 2015;56:701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter SF, Scholl M, Almkvist O, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46.

    Article  CAS  PubMed  Google Scholar 

  • Brun A, Englund E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology. 1981;5:549–64.

    Article  CAS  PubMed  Google Scholar 

  • Pascual B, Prieto E, Arbizu J, et al. Decreased carbon-11-flumazenil binding in early Alzheimer’s disease. Brain. 2012;135:2817–25.

    Article  PubMed  Google Scholar 

  • Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex. 2009;19:497–510.

    Article  PubMed  Google Scholar 

  • Seeley WW, Crawford RK, Zhou J, et al. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinelli EG, Agosta F, Ferraro PM, et al. Brain MR imaging in patients with lower motor neuron-predominant disease. Radiology. 2016;280:545–56.

    Article  PubMed  Google Scholar 

  • Lehmann M, Madison CM, Ghosh PM, et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2013;110:11606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Gennatas ED, Kramer JH, et al. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepulcre J, Schultz AP, Sabuncu M, et al. In vivo tau, amyloid, and gray matter profiles in the aging brain. J Neurosci. 2016;36:7364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepulcre J, Masdeu JC. Advanced neuroimaging methods towards characterization of early stages of AD. In: Castrillo JI, Oliver SG, editors. Systems Biology of Alzheimer’s Disease. London: Humana Press; 2015.

    Google Scholar 

  • Hebb DO. Distinctive features of learning in the higher animal. In: Delafresnaye JF, editor. Brain Mechanisms and Learning. London: Oxford University Press; 1961. p. 37–46.

    Google Scholar 

  • Sepulcre J, Sabuncu MR, Johnson KA. Network assemblies in the functional brain. Curr Opin Neurol. 2012;25:384–91.

    PubMed  PubMed Central  Google Scholar 

  • de Calignon A, Polydoro M, Suarez-Calvet M, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73:685–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7, e31302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk KC, Kehm V, Carroll J, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 2013;47:601–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15:727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe CC, Pejoska S, Mulligan RS, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for beta-amyloid imaging in aging and dementia. J Nucl Med. 2013;54:880–6.

    Article  CAS  PubMed  Google Scholar 

  • Landau SM, Thomas BA, Thurfjell L, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4