A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11738-009-0317-0 below:

Assessment of ploidy level on stress tolerance of Cenchrus species based on leaf photosynthetic characteristics

  • Arnon DI (1949) Copper enzyme in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15. doi:10.1104/pp.24.1.1

    Article  PubMed  CAS  Google Scholar 

  • Bloch D, Hoffman LM, Marlander B (2006) Solute accumulation as a cause for quality losses in sugar beet submitted to continuous temporary drought stress. J Agron Crop Sci 192:17–24. doi:10.1111/j.1439-037X.2006.00185.x

    Article  CAS  Google Scholar 

  • Briggs GM, Jurik TW, Gates DM (1986) Nonstomatal limitation of CO2 assimilation in three tree species during natural drought condition. Physiol Plant 66:521–526. doi:10.1111/j.1399-3054.1986.tb05961.x

    Article  Google Scholar 

  • Brown RH, Byrd GT (1996) Transpiration efficiency, specific leaf weight, and mineral concentration in peanut and pearl millet. Crop Sci 36:475–480

    Google Scholar 

  • Chandra A, Dubey A (2008) Evaluation of genus Cenchrus based on malondialdehyde, proline content, specific leaf area and carbon isotope discrimination for drought tolerance and divergence of species at DNA level. Acta Physiol Plant 30:53–61. doi:10.1007/s11738-007-0090-x

    Article  CAS  Google Scholar 

  • Chandra A, Bhatt RK, Misra LP (1998) Effect of water stress on biochemical and physiological characteristics of oat genotypes. J Agron Crop Sci 181:45–48. doi:10.1111/j.1439-037X.1998.tb00396.x

    Article  CAS  Google Scholar 

  • Cornic G (1994) Drought stress and high light effects on leaf photosynthesis. In: Barker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis, Bio-Scientific Publishers, Oxford, pp 297–313

  • Cornic G, Massacci A (1995) Leaf photosynthesis under drought stress. In: Mathis P (ed) Photosynthesis from light to biosphere. Kluwer, Dordrecht, pp 347–366

    Google Scholar 

  • Dabadghao PM, Shankarnarayan KA (1973) The grass cover of India. ICAR, India, pp 105–106

    Google Scholar 

  • Diop NN, Kidric M, Repllin A, Gareil M, Lameta AA, Pham TAT, Zuily FY (2004) A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett 577:545–550. doi:10.1016/j.febslet.2004.10.014

    Article  PubMed  CAS  Google Scholar 

  • Dubey A, Chandra A (2003) Differential changes in enzyme activities caused by water stress in Cenchrus species. Ind J Plant Physiol 8:339–345

    Google Scholar 

  • Dubey A, Chandra A (2008) Effect of water stress on carbon isotope discrimination and its relationship with transpiration efficiency and specific leaf area in Cenchrus species. J Environ Biol 29:371–376

    PubMed  CAS  Google Scholar 

  • Field CB, Ball JT, Berry JA (1989) Photosynthesis: principles and yield techniques. In: Ehleringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology—field methods and instrumentation. Chapman and Hall, London, pp 209–253

    Google Scholar 

  • Galle A, Feller U (2007) Changes of photosynthetic traits in beach saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plant 131:412–421. doi:10.1111/j.1399-3054.2007.00972.x

    Article  PubMed  CAS  Google Scholar 

  • Ghannoum O, Conroy JP, Driscoll SP, Paul MJ, Foyer CH, Lawlor DW (2003) Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses. New Phytol 159:599–608. doi:10.1046/j.1469-8137.2003.00835.x

    Article  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedure for agricultural research. Wiley, New York

    Google Scholar 

  • Good AG, Zaplachinki ST (1994) The effects of drought stress on free amino acid accumulation and protein in Brassica napus. Physiol Plant 90:9–14. doi:10.1111/j.1399-3054.1994.tb02185.x

    Article  CAS  Google Scholar 

  • Grzesiak MT, Grzesiak A, Skoczowski A (2006) Changes of leaf water potential and gas exchange during after drought in triticale and maize genotypes differing in drought tolerance. Photosynthetica 44:561–568. doi:10.1007/s11099-006-0072-z

    Article  Google Scholar 

  • Hall AE, Thiaw S, Esmail AM, Ethlers ID (1997) Water-use efficiency and drought adaptation of cowpea. In: Singh BB, Mohan RDL, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. IITA-JIRCAS, Ibadan, pp 87–98

    Google Scholar 

  • Hamidou F, Zombre G, Braconnier S (2007) Physiological and biochemical responses of cowpea genotypes to water stress under glasshouse and field conditions. J Agron Crop Sci 193:229–237. doi:10.1111/j.1439-037X.2007.00253.x

    Article  CAS  Google Scholar 

  • Hardy JP, Anderson VJ, Gardner JS (1995) Stomatal characteristics, conductance ratio, and drought-induced leaf modification of semiarid grasslands species. Am J Bot 82:1–7. doi:10.2307/2445779

    Article  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Carbohydrate chemistry. In: Whistler RL, Be Miller JN (eds) Estimation of carbohydrate. Academic Press, New York, pp 17–22

  • Herppich WB, Peckmann K (1997) Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia cordiflora to short term drought and re-watering. J Plant Physiol 150:467–574

    CAS  Google Scholar 

  • Hiscox JD, Israelstam GM (1978) Method for extraction of chlorophyll from leaf tissues without maceration. Can J Bot 57:1332–1334. doi:10.1139/b79-163

    Article  Google Scholar 

  • Jongdee B, Fukai S, Cooper M (2002) Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76:153–163. doi:10.1016/S0378-4290(02)00036-9

    Article  Google Scholar 

  • Kanechi M, Kunitomo E, Inagaki N, Maekawa S (1995) Water stress effects on ribulose-1,5-biphosphate carboxylase and its relationship to photosynthesis in sunflower leaves. In: Mathis P (ed) Photosynthesis from light to biosphere. Kluwer, Dordrecht, pp 597–600

    Google Scholar 

  • Kramer PJ (1962) Tree growth. In: Kozlowski TT (ed) The role of water in tree growth. Ronald press, New York, pp 171–182

    Google Scholar 

  • Li W-L, Berlyn GP, Ashton PMS (1996) Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am J Bot 8:15–20

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin–phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lu C, Zhang J (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206. doi:10.1093/jexbot/50.336.1199

    Article  CAS  Google Scholar 

  • Mable BK (2003) Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci 8:582–590. doi:10.1016/j.tplants.2003.10.006

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RAC, Keys AJ, Madgwick PJ, Parry MAJ, Lawlor DW (2005) Adaptation of photosynthesis in marama bean Tylosema esculentum (Burchell A. Schreiber) to a high temperature, high radiation, drought prone environment. Plant Physiol Biochem 43:969–976. doi:10.1016/j.plaphy.2005.08.009

    Article  PubMed  CAS  Google Scholar 

  • Mwanamwenge J, Loss SP, Siddique KHM, Cocks PS (1999) Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia faba L.). Eur J Agron 11:1–11. doi:10.1016/S1161-0301(99)00003-9

    Article  Google Scholar 

  • Passioura JB (1994) The yield of crops in relation to drought. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and determination of crop yield. ASA, CSSA, SSSA, Madison, pp 365–389

    Google Scholar 

  • Redmann RE (1985) Adaptation of grasses to water stress-leaf rolling and stomatal distribution. Ann Mo Bot Gard 72:833–842. doi:10.2307/2399225

    Article  Google Scholar 

  • Sairam RK, Chandrasekhar V, Srivastava GC (2001) Comparison of hexaploid and tetraploid wheat cultivars in their responses to water stress. Biol Plant 44:89–94. doi:10.1023/A:1017926522514

    Article  Google Scholar 

  • Sanderson MA, David W, Mark AH (1997) Physiological and morphological responses of perennial forages to stress. Adv Agron 59:171–224. doi:10.1016/S0065-2113(08)60055-3

    Article  Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagoa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45–56. doi:10.1016/S0098-8472(03)00059-5

    Article  CAS  Google Scholar 

  • Subrahmanyam D, Subash N, Haris A, Sikka AK (2006) Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica 44:125–129. doi:10.1007/s11099-005-0167-y

    Article  CAS  Google Scholar 

  • Tezara W, Lawlor DW (1995) Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower. In: Mathis P (ed) Photosynthesis from light to biosphere. Kluwer, Dordrecht, pp 625–628

    Google Scholar 

  • Thumma BR, Naidu PB, Cameron DF, Bahnisch LM (1998) Transpiration efficiency and its relationship with carbon isotope discrimination under well watered and water-stressed conditions in Stylosanthes scabra. Aust J Agric Res 49:1039–1045. doi:10.1071/A97169

    Article  Google Scholar 

  • Virgona JM, Hubick KT, Rawson HM, Farquhar GD, Downes RW (1990) Genotypic variation in transpiration efficiency, carbon isotope discrimination and carbon allocation during early growth in sunflower. Aust J Plant Physiol 17:207–214

    Article  CAS  Google Scholar 

  • Wullschleger SD, Sanderson MA, McLaughlin SB, Biradar DP, Rayburn AL (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci 36:306–312

    Article  Google Scholar 

  • Zhang Z, Kirkham MB (1994) Drought stress induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zhu X, Gong H, Chen G, Wang S, Zhang C (2005) Different solutes levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ 62:1–14. doi:10.1016/j.jaridenv.2004.10.010

    Article  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4