A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11738-008-0224-9 below:

Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissue. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense system in plants. CRC Press, Boca Raton, FL, pp 77–104

    Google Scholar 

  • Bañuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777

    Article  Google Scholar 

  • Ben Youssef N, Nouairi I, Temime SB, Taamalli W, Zarrouk M, Ghorbal MH et al (2005) Cadmium effects on lipid metabolism of rape (Brassica napus L.). C R Biol 328:745–757. doi:10.1016/j.crvi.2005.05.010

    Article  PubMed  CAS  Google Scholar 

  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225. doi:10.1016/j.jplph.2004.12.006

    Article  PubMed  CAS  Google Scholar 

  • Birecka H, Garraway MO (1978) Corn leaf isoperoxidase reaction to mechanical injury and infection with Helminthosporium maydis. Effects of cycloheximide. Plant Physiol 61:561–566

    Article  PubMed  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167. doi:10.1002/bit.10656

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205. doi:10.1046/j.1469-8137.2000.00630.x

    Article  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x

    Article  CAS  Google Scholar 

  • Castillo FJ (1986) Extracellular peroxidases as markers of stress? In: Greppin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, pp 419–426

    Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486. doi:10.1007/s004250000458

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

    CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832. doi:10.1104/pp.123.3.825

    Article  PubMed  CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775. doi:10.1093/jxb/eri062

    Article  PubMed  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzymes activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5

    Article  CAS  Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120. doi:10.1016/j.plantsci.2004.07.021

    Article  CAS  Google Scholar 

  • Davis RD (1984) Cadmium—a complex environmental problem: cadmium in sludge used as fertilizer. Experientia 40:117–126. doi:10.1007/BF01963574

    Article  PubMed  CAS  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257. doi:10.1016/j.envexpbot.2004.03.017

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109. doi:10.1093/jexbot/52.358.1101

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666. doi:10.1016/j.chemosphere.2006.01.030

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydron peroxide and glutathione associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254. doi:10.1111/j.1399-3054.1997.tb04780.x

    Article  CAS  Google Scholar 

  • Gupta M, Tripathi RD, Rai UN, Chandra P (1998) Role of glutathione and phytochelatin in Hydrilla verticillata Royle and Valliseria spiralis L. under mercury stress. Chemosphere 37:785–800. doi:10.1016/S0045-6535(98)00073-3

    Article  CAS  Google Scholar 

  • Gupta M, Tripathi RD, Rai UN, Haq W (1999) Lead induced synthesis of metal binding peptides (phytochelatins) in submerged macrophyte Vallisneria spiralis L. Physiol Mol Biol Plants 5:173–180

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi:10.1093/jexbot/53.366.1

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17. doi:10.1007/BF00390803

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn edn. Clarendon Press, Oxford, UK, pp 110–119

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  PubMed  CAS  Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093. doi:10.1016/S0168-9452(01)00330-2

    Article  PubMed  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839. doi:10.1093/jxb/erg205

    Article  PubMed  CAS  Google Scholar 

  • Heyes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385. doi:10.1023/A:1018457305212

    Article  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. doi:10.1016/0003-2697(76)90326-2

    Article  PubMed  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    PubMed  CAS  Google Scholar 

  • Jackson PJ, Delhaize E, Kuske CR (1992) Biosynthesis and metabolic roles of cadystins (γ-EC)n-G and their precursors in Datura innoxia. Plant Soil 146:281–289. doi:10.1007/BF00012022

    Article  CAS  Google Scholar 

  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Hàlàcsy. Plant Physiol 115:1641–1650

    PubMed  Google Scholar 

  • Kufel I (1991) Lead and molybdenum in reed and cattail—open versus closed type of metal cycling. Aquat Bot 40:275–288. doi:10.1016/0304-3770(91)90063-B

    Article  CAS  Google Scholar 

  • Kumar PBA, Dushenkov V, Motto J, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238. doi:10.1021/es00005a014

    Article  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentaion of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84. doi:10.1007/s004250000366

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978. doi:10.1016/0031-9422(88)80254-1

    Article  CAS  Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039. doi:10.1093/jexbot/49.323.1031

    Article  CAS  Google Scholar 

  • Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368. doi:10.1074/jbc.M108777200

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Xiaorong W, Yi L, Wenchao D, Hongyan G, Daqiang Y (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98. doi:10.1016/j.chemosphere.2007.04.041

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736. doi:10.1007/s00425-004-1392-5

    Article  PubMed  CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani EF (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum L. Mill). Plant Sci 127:129–137. doi:10.1016/S0168-9452(97)00116-7

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214. doi:10.1023/A:1010358708525

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37. doi:10.1016/j.plaphy.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  PubMed  CAS  Google Scholar 

  • Nouairi I, Ben Ammar W, Ben Youssef N, Douja Daoud BM, Ghorbel MH, Zarrouk M (2006a) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519. doi:10.1016/j.plantsci.2005.10.003

    Article  CAS  Google Scholar 

  • Nouairi I, Ghnaya T, Ben Youssef N, Zarrouk M, Ghorbel MH (2006b) Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portuacastrum and Mesembryanthenum crystalinum under cadmium stress. J Plant Physiol 163:1198–1202. doi:10.1016/j.jplph.2005.08.020

    Article  PubMed  CAS  Google Scholar 

  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipids. Phytochem 7:1343–1350. doi:10.1016/S0031-9422(97)00159-3

    Article  Google Scholar 

  • Pawlik-Skowronska B (2002) Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ Pollut 119:119–127. doi:10.1016/S0269-7491(01)00280-9

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in higher plants. Environ Exp Bot 35:525–545. doi:10.1016/0098-8472(95)00024-0

    Article  CAS  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181. doi:10.1016/j.plantsci.2004.06.018

    Article  CAS  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and sisozymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113. doi:10.1016/S0098-8472(00)00059-9

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226. doi:10.1016/S0958-1669(97)80106-1

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 32:19–48. doi:10.1007/BF02738153

    Article  Google Scholar 

  • Salt DE, Smith R, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668. doi:10.1146/annurev.arplant.49.1.643

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, Del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi:10.1016/S0098-8472(98)00058-6

    Article  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898. doi:10.1104/pp.127.3.887

    Article  PubMed  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere A et al (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444. doi:10.1016/j.plaphy.2005.03.007

    Article  PubMed  CAS  Google Scholar 

  • Speiser DM, Abrahamson SL, Banuoelos G, Ow DW (1992) Brassica juncea produces a phtyochelatin–cadmium–sulfide complex. Plant Physiol 99:817–821

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J Plant Physiol 161:665–674. doi:10.1078/0176-1617-01274

    Article  PubMed  CAS  Google Scholar 

  • Świergosz-Kowalewska R, Bednarska A, Kafel A (2006) Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. Chemosphere 65:963–974. doi:10.1016/j.chemosphere.2006.03.040

    Article  PubMed  CAS  Google Scholar 

  • Tripathi RD, Rai UN, Gupta M, Chandra P (1996) Induction of phytochelatins in Hydrilla verticillata (l.f.) Royle under cadmium stress. Bull Environ Contam Toxicol 56:505–512. doi:10.1007/s001289900073

    Article  PubMed  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol 92:1086–1093

    Article  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30. doi:10.1016/S0378-1119(96)00422-2

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4