A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11419-013-0186-5 below:

Assessment of the presence of damiana in herbal blends of forensic interest based on comprehensive two-dimensional gas chromatography

  • Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837

    Article  PubMed  Google Scholar 

  • Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66

    Article  CAS  Google Scholar 

  • Dresen S, Ferreirós N, Pütz M, Westphal F, Zimmermann R, Auwärter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–1194

    Article  PubMed  CAS  Google Scholar 

  • Emanuel CEJ, Ellison B, Banks CE (2010) Spice up your life: screening the illegal components of ‘Spice’ herbal products. Anal Methods 2:614–616

    Article  CAS  Google Scholar 

  • Hudson S, Ramsey J, King L, Timbers S, Maynard S, Dargan PI, Wood DM (2010) Use of high-resolution accurate mass spectrometry to detect reported and previously unreported cannabinomimetics in “herbal high” products. J Anal Toxicol 34:252–260

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2011) Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products. Forensic Toxicol 29:25–37

    Article  CAS  Google Scholar 

  • Nakajima J, Takahashi M, Nonaka R, Seto T, Suzuki J, Yoshida M, Kanai C, Hamano T (2011) Identification and quantitation of a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone and a naphthoylindole 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201) found in illegal products obtained via the Internet and their cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 29:132–141

    Article  CAS  Google Scholar 

  • Simolka K, Lindigkeit R, Schiebel H-M, Papke U, Ernst L, Beuerle T (2012) Analysis of synthetic cannabinoids in “spice-like” herbal highs: snapshot of the German market in summer 2011. Anal Bioanal Chem 404:157–171

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125

    Article  CAS  Google Scholar 

  • Kneisel S, Bisel P, Brecht V, Broecker S, Müller M, Auwärter V (2012) Identification of cannabimimetic AM-120 and its azepane isomer (N-methylazepan-3-yl)-3-(1-naphthoyl)indole in a research chemical and several herbal mixtures. Forensic Toxicol 30:126–134

    Article  CAS  Google Scholar 

  • Zuba D, Byrska B, Maciow M (2011) Comparison of “herbal highs” composition. Anal Bioanal Chem 400:119–126

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Uchiyama N, Ogata J, Kikura-Hanajiri R, Goda Y (2010) Chemical constituents and DNA sequence analysis of a psychotropic herbal product. Forensic Toxicol 28:77–83

    Article  CAS  Google Scholar 

  • Ogata J, Uchiyama N, Kikura-Hanajiri R, Goda Y. DNA sequence analyses of blended herbal products including synthetic cannabinoids as designer drugs. Forensic Sci Int (in press). doi:10.1016/j.forsciint.2012.09.006

  • Rätsch C (2007) Enzyklopädie der psychoaktiven Pflanzen. AT Verlag, Aarau

    Google Scholar 

  • Kumar S, Taneja R, Sharma A (2005) The Genus Turnera: a review update. Pharm Biol 43:383–391

    Article  Google Scholar 

  • Alcaraz-Meléndez L, Real-Cosío S, Suchý V, Švajdlenka E (2007) Differences in essential oil production and leaf structure in pheno-types of damiana (Turnera diffusa willd.). J Plant Biol 50:378–382

    Article  Google Scholar 

  • Auterhoff H, Häufel HP (1968) Inhaltsstoffe der Damiana-Droge. Arch Pharm 301(1968):537–544

    Article  CAS  Google Scholar 

  • Auterhoff H, Momberger H (1972) Inhaltsstoffe des ätherischen Öles aus Damiana-Blättern. Arch Pharm 305:455–462

    Article  CAS  Google Scholar 

  • Bicchi C, Rubiolo P, Saranz Camargo EE, Vilegas W, de Souza Gracioso J, Monteiro Souza Brito AR (2003) Components of Turnera diffusa Willd. var. afrodisiaca (Ward) Urb. essential oil. Flavour Frag J 18:59–61

  • Zhao J, Pawar RS, Ali Z, Khan IA (2007) Phytochemical investigation of Turnera diffusa. J Nat Prod 70:289–292

    Article  PubMed  CAS  Google Scholar 

  • Godoi AFL, Vilegas W, Godoi RHM, Van Vaeck L, Van Grieken R (2004) Application of low-pressure gas chromatography-ion-trap mass spectrometry to the analysis of the essential oil of Turnera diffusa (Ward.) Urb. J Chromatogr A 1027:127–130

    Article  PubMed  CAS  Google Scholar 

  • Garza-Juarez A, Waksman-De-Torres N, Ramirez-Duron R, Cavazos MLS (2009) Development and validation of fingerprints of turnera diffusa extracts obtained by use of high-performance liquid chromatography with diode array detection and chemometric methods. Acta Chromatogr 21:217–235

    Article  CAS  Google Scholar 

  • Tistaert C, Dejaegher B, Heyden YV (2011) Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Anal Chim Acta 690:148–161

    Article  PubMed  CAS  Google Scholar 

  • Cordero C, Liberto E, Bicchi C, Rubiolo P, Reichenbach SE, Tian X, Tao Q (2010) Targeted and non-targeted approaches for complex natural sample profiling by GC × GC–qMS. J Chromatogr Sci 48:251–261

    Article  PubMed  CAS  Google Scholar 

  • Di X, Shellie RA, Marriott PJ, Huie CW (2004) Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC × GC) for the chemical profiling of volatile oils in complex herbal mixtures. J Sep Sci 27:451–458

    Article  PubMed  CAS  Google Scholar 

  • Qiu YQ, Lu X, Pang T, Zhu SK, Kong HW, Xu GW (2007) Study of traditional Chinese medicine volatile oils from different geographical origins by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC–TOFMS) in combination with multivariate analysis. J Pharm Biomed Anal 43:1721–1727

    Article  PubMed  CAS  Google Scholar 

  • Schmarr HG, Bernhardt J (2009) Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. J Chromatogr A 1217:565–574

    PubMed  Google Scholar 

  • Almstetter MF, Appel IJ, Dettmer K, Gruber MA, Oefner PJ (2011) Comparison of two algorithmic data processing strategies for metabolic fingerprinting by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1218:7031–7038

    PubMed  CAS  Google Scholar 

  • Pierce KM, Hoggard JC, Hope JL, Rainey PM, Hoofnagle AN, Jack RM, Wright BW, Synovec RE (2006) Fisher ratio method applied to third-order separation data to identify significant chemical components of metabolite extracts. Anal Chem 78:5068–5075

    Article  PubMed  CAS  Google Scholar 

  • Gröger T, Welthagen W, Mitschke S, Schäffer M, Zimmermann R (2008) Application of comprehensive two-dimensional gas chromatography mass spectrometry and different types of data analysis for the investigation of cigarette particulate matter. J Sep Sci 31:3366–3374

    Article  PubMed  Google Scholar 

  • Gröger T, Schäffer M, Pütz M, Ahrens B, Drew K, Eschner M, Zimmermann R (2008) Application of two-dimensional gas chromatography combined with pixel-based chemometric processing for the chemical profiling of illicit drug samples. J Chromatogr A 1200:8–16

    Article  PubMed  Google Scholar 

  • Shellie RA, Welthagen W, Zrostliková J, Spranger J, Ristow M, Fiehn O, Zimmermann R (2005) Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts. J Chromatogr A 1086:83–90

    Article  PubMed  CAS  Google Scholar 

  • Nielsen NPV, Carstensen JM, Smedsgaard J (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J Chromatogr A 805:17–35

    Article  CAS  Google Scholar 

  • Tomasi G, van den Berg F, Andersson C (2004) Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J Chemometr 18:231–241

    Article  CAS  Google Scholar 

  • Schäffer M, Gröger T, Pütz M, Dieckmann S, Zimmermann R (2012) Comparative analysis of the chemical profiles of 3,4-methylenedioxymethamphetamine based on comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOFMS). J Forensic Sci 57:1181–1189

    Article  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4