Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588
Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Split M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediat 11:416–424
Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg-, and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286
Burkhardt C, Insam H, Hutchinson TC, Reber HH (1993) Impact of heavy metals on the degradative capabilities of soil bacterial communities. Biol Fertil Soils 16:154–156
Cunningham J, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458
Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant–microbe interactions. Environ Microbiol 12:1–12
Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242
Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E, Roels HA, Carleer R, Staessen JA (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103:30–37
Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterosso C (2009) Trace elements behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259
Koopmans GF, Römkens PFAM, Song J, Temminghoff EJM, Japenga J (2007) Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water Air Soil Pollut 181:355–371
Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522
Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182
Lin Q, Wang ZW, Ma S, Chen YX (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368:814–822
Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediat 3:173–187
Ma Y, Rajkumar M, Freitas H (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161
Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediat 11:251–267
Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge. Plant Soil 290:157–172
Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68
Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334
Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126
Nawrot TS, Van Hecke E, Thijs L, Richart T, Kuznetsova T, Jin Y, Vangronsveld J, Roels HA, Staessen JA (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116:1620–1628
Patten C, Glick B (2002) Role of pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801
Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and theit potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160
Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, Van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J (2011) Short rotation coppice culture of willow and poplar as energy crops on metal contaminated agriculture soils. Int J Phytoremediat 13:194–207
Said WA, Lewis DA (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl Environ Microbiol 57:1498–1503
Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101
Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798
Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56
Sessitsch A, Puschenreiter M (2008) Endophytes and rhizosphere bacteria of plants growing in heavy metal-containing soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 317–332
Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170
Shields MS, Reagin MJ (1992) Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl Environ Microbiol 58:3977–3983
Shields MS, Reagin MJ, Gerger RR, Campbell R, Somerville C (1995) TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl Environ Microbiol 61(4):1352–1356
Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouelette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475
Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505
Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757
Thewys T, Witters N, Van Slycken S, Ruttens A, Meers E, Tack FMG, Vangronsveld J (2010a) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize part I: impact on the farmer's income. Int J Phytoremediat 12(7):650–662
Thewys T, Witters N, Meers E (2010b) Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize part II: economics of anaerobic digestion of heavy metal contaminated maize in Belgium. Int J Phytoremediat 12(7):663–679
Top E, Van Rollegem P, van der Lelie D, Mergeay M, Verstraete W (1992) The importance of retromobilization to gene dissemination. In: Gauthier MJ (ed) Gene Transfers and Environment. Springer-Verlag Heidelberg, FRG, pp 127–134
Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338
van der Lelie D (1998) Biological interactions: the role of soil bacteria in the bioremediation of heavy metal-polluted soils. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer, Berlin Heidelberg New York, pp 31–50
van der Lelie D, Schwitzguébel J-P, Vangronsveld J, Baker AJM (2001) Assessing phytoremediation's progress in the United States and Europe. Environ Sci Technol 35:446A–452A
van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Rogers A, Wu X, Zhu W, Weyens N, Vangronsveld J, Newman L (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28:346–358
Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FMG, Vangronsveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal contaminated soils combined with bioenergy production. J Environ Eng Landsc 15:227–236
Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794
Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254
Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009b) Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598
Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009c) Bacteria associated with oak and Ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration. Environ Sci Pollut Res 16:830–843
Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009d) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418
Weyens N, Truyens S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010a) Potential of Pseudomonas putida W619-TCE to reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919
Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, van der Lelie D, Carleer R, Vangronsveld J (2010b) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytoremediat 13:244–255
Weyens N, Croes S, Dupae J, van der Lelie D, Carleer R, Vangronsveld J (2010c) Endophytes to deal with co-contamination of Ni and TCE. Environ Pollut 158:2422–2427
Weyens N, Boulet J, Adriaensen D, Timmermans J-P, Prinsen E, Van Oevelen S, D’Haen J, Smeets K, van der Lelie D, Taghavi S, Vangronsveld J (2012) Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356(1–2):217–230
Yang J, Kloepper J, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4
Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4