A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11356-017-0987-x below:

Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24(2):253–262. https://doi.org/10.1007/s11274-007-9464-x

    Article  CAS  Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499. https://doi.org/10.1016/j.jhazmat.2014.09.064

    Article  CAS  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014a) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078

    Article  CAS  Google Scholar 

  • Afzal M, Shabir G, Iqbal S, Mustafa T, Khan QM, Khalid ZM (2014b) Assessment of heavy metal contamination in soil and groundwater at leather industrial area of Kasur, Pakistan. Clean Soil Air Water 42(8):1133–1139. https://doi.org/10.1002/clen.201100715

    Article  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediat 14(1):35–47. https://doi.org/10.1080/15226514.2011.552928

    Article  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13(1):51–58. https://doi.org/10.1016/j.jgeb.2015.02.001

    Article  Google Scholar 

  • Akhter J, Murray R, Mahmood K, Malik K, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258(1):207–216. https://doi.org/10.1023/B:PLSO.0000016551.08880.6b

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157(12):3347–3350. https://doi.org/10.1016/j.envpol.2009.08.023

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzyme in isolated chloroplast, polyphenoloxidase in Beta Vulgaris. Plant Physiol 24(1):1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  Google Scholar 

  • Arslan A, Imran A, Khan QM, Afzal M (2017) Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24(5):4322–4336. https://doi.org/10.1007/s11356-015-4935-3

    Article  Google Scholar 

  • Ashraf S, Afzal M, Naveed M, Shahid M, Zahir ZA (2017): Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremediat (in press), 00. https://doi.org/10.1080/15226514.2017.1337072

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286. https://doi.org/10.1016/j.chemosphere.2008.09.013

    Article  Google Scholar 

  • Brunetti G, Farrag K, Soler-Rovira P, Ferrara M, Nigro F, Senesi N (2012) The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma 170:322–330. https://doi.org/10.1016/j.geoderma.2011.11.029

    Article  CAS  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48(8):663–672. https://doi.org/10.1016/j.plaphy.2010.05.001

    Article  CAS  Google Scholar 

  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50(6):789–793. https://doi.org/10.1016/S0045-6535(02)00220-5

    Article  CAS  Google Scholar 

  • Cheng S-F, Huang C-Y, Lin Y-C, Lin S-C, Chen K-L (2015) Phytoremediation of lead using corn in contaminated agricultural land—an in situ study and benefit assessment. Ecotoxicol Environ Saf 111:72–77. https://doi.org/10.1016/j.ecoenv.2014.09.024

    Article  CAS  Google Scholar 

  • Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1-3):323–330. https://doi.org/10.1016/j.jhazmat.2009.12.035

    Article  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52(2):153–162. https://doi.org/10.1016/j.femsec.2004.11.005

    Article  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84. https://doi.org/10.1016/j.soilbio.2007.06.024

    Article  Google Scholar 

  • Fatima K, Imran A, Amin I, Khan QM, Afzal M (2016) Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res 23(7):6188–6196. https://doi.org/10.1007/s11356-015-5845-0

    Article  CAS  Google Scholar 

  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30(10-11):1389–1414. https://doi.org/10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  • Glick B, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119(3):329–339. https://doi.org/10.1007/s10658-007-9162-4

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393. https://doi.org/10.1016/S0734-9750(03)00055-7

    Article  CAS  Google Scholar 

  • Gołda S, Korzeniowska J (2016) Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Ochrona Srodowiska i Zasobów Naturalnych 27:8–14

    Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90(6):1960–1965. https://doi.org/10.1016/j.chemosphere.2012.10.057

    Article  CAS  Google Scholar 

  • Ijaz A, Imran A, Anwar-ul-Haq M, Khan QM, Afzal M (2016b) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405(1-2):179–195. https://doi.org/10.1007/s11104-015-2606-2

    Article  CAS  Google Scholar 

  • Ijaz A, Iqbal Z, Afzal M (2016a) Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis. Water Sci Technol 74(9):2192–2201. https://doi.org/10.2166/wst.2016.405

    Article  Google Scholar 

  • Ijaz A, Shabir G, Khan QM, Afzal M (2015) Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng 84:58–66. https://doi.org/10.1016/j.ecoleng.2015.07.025

    Article  Google Scholar 

  • Jiang C-Y, Sheng X-F, Qian M, Wang Q-Y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  Google Scholar 

  • Karczewska A, Lewińska K, Gałka B (2013) Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. J Hazard Mater 262:1014–1021. https://doi.org/10.1016/j.jhazmat.2012.09.008

    Article  CAS  Google Scholar 

  • Khan MU, Sessitsch A, Harris M, Fatima K, Imran A, Arslan M, Shabir G, Khan QM, Afzal M (2015) Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci 5:10.3389

    Article  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013a) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(0):1317–1332. https://doi.org/10.1016/j.chemosphere.2012.09.045

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Mirza MS, Khan QM (2013b) Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil. Chemosphere 91(5):663–668. https://doi.org/10.1016/j.chemosphere.2013.01.025

    Article  CAS  Google Scholar 

  • Korzeniowska J, Stanislawska-Glubiak E (2015) Phytoremediation potential of Miscanthus giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ Sci Pollut Res 22(15):11648–11657. https://doi.org/10.1007/s11356-015-4439-1

    Article  CAS  Google Scholar 

  • Korzeniowska J, Stanislawska-Glubiak E, Igras J (2011) Applicability of energy crops for metal phytostabilization of soils moderately contaminated with copper, nickel and zinc. J Food Agric Environ 9:693–697

    CAS  Google Scholar 

  • Kumar M, Mishra S, Dixit V, Kumar M, Agarwal L, Chauhan PS, Nautiyal CS (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.) Plant Signal Behav 11:e1071004

    Article  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils. Environ Pollut 153(3):497–522. https://doi.org/10.1016/j.envpol.2007.09.015

    Article  CAS  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391. https://doi.org/10.1128/JB.186.16.5384-5391.2004

    Article  CAS  Google Scholar 

  • Lin Y-F, Severing EI, te Lintel Hekkert B, Schijlen E, Aarts MG (2014) A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens. Front Plant Sci 5:261

    Google Scholar 

  • Lotfy SM, Mostafa AZ (2014) Phytoremediation of contaminated soil with cobalt and chromium. J Geochem Explor 144:367–373. https://doi.org/10.1016/j.gexplo.2013.07.003

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63(1):541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  CAS  Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011b) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011a) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237. https://doi.org/10.1016/j.jhazmat.2011.08.034

    Article  CAS  Google Scholar 

  • Mohanty M, Patra HK (2012) Phytoremediation potential of paragrass—an in situ approach for chromium contaminated soil. Int J Phytoremediat 14(8):796–805. https://doi.org/10.1080/15226514.2011.619595

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals. Academic Press, Cambrige

    Google Scholar 

  • Nunes da Silva M, Mucha AP, Rocha AC, Teixeira C, Gomes CR, Almeida CMR (2014) A strategy to potentiate Cd phytoremediation by saltmarsh plants—Autochthonous bioaugmentation. J Environ Manag 134:136–144. https://doi.org/10.1016/j.jenvman.2014.01.004

    Article  CAS  Google Scholar 

  • Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92(6):659–666. https://doi.org/10.1016/j.chemosphere.2013.01.082

    Article  CAS  Google Scholar 

  • Qiu Z, Tan H, Zhou S, Cao L (2014) Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J Hazard Mater 267:17–20. https://doi.org/10.1016/j.jhazmat.2013.12.043

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160. https://doi.org/10.1016/j.chemosphere.2009.06.047

    Article  CAS  Google Scholar 

  • Ramana S, Biswas AK, Ajay K, Singh AB, Ahirwar NK, Subba Rao A (2013) Potential of rose for phytostabilization of chromium contaminated soils. Indian J Plant Physiol 18(4):381–383. https://doi.org/10.1007/s40502-013-0055-6

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60(100):182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753. https://doi.org/10.1016/j.envint.2005.02.003

    Article  CAS  Google Scholar 

  • Shehzadi M, Fatima K, Imran A, Mirza M, Khan Q, Afzal M (2016) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst 150(6):1261–1270. https://doi.org/10.1080/11263504.2015.1022238

    Article  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170. https://doi.org/10.1016/j.envpol.2008.04.007

    Article  CAS  Google Scholar 

  • Singh N, Rai U, Tewari A, Singh M (2010) Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge amended soil. Bull Environ Contam Toxicol 84(1):118–124. https://doi.org/10.1007/s00128-009-9875-5

    Article  CAS  Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55. https://doi.org/10.1016/j.envint.2017.05.001

    Article  CAS  Google Scholar 

  • Souza R, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047. https://doi.org/10.1016/j.jhazmat.2012.08.019

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757. https://doi.org/10.1128/AEM.02239-08

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria. Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability. Molecules 21(5):573. https://doi.org/10.3390/molecules21050573

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Wang W, Deng Z, Tan H, Cao L (2013) Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Int J Phytoremediat 15(5):488–497. https://doi.org/10.1080/15226514.2012.716101

    Article  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  Google Scholar 

  • Yousaf S, Afzal M, Anees M, Malik RN, Campisano A (2014) Ecology and functional potential of endophytes in bioremediation: a molecular perspective. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, pp 301–320. https://doi.org/10.1007/978-81-322-1575-2_16

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104. https://doi.org/10.1016/j.chemosphere.2013.11.040

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4