A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11356-016-6483-x below:

Diversity of endophytic Pseudomonas in Halimione portulacoides from metal(loid)-polluted salt marshes

  • Aguilar-Barajas E, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C (2010) Heavy metal resistance in Pseudomonads. In: Ramos J, Filloux A (Eds.). Pseudomonas, Volume 6, Springer, pp. 255–282

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167. doi:10.1016/j.plaphy.2014.04.003

    Article  CAS  Google Scholar 

  • Almeida CMR, Dias AC, Mucha AP, Bordalo AA, Vasconcelos MTSD (2009) Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere 75:135–140. doi:10.1016/j.chemosphere.2008.12.037

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  • Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, Yoneyama T (2005) Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Sci Plant Nutr 51:303–308. doi:10.1111/j.1747-0765.2005.tb00034.x

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Válega M, Pacheco M, Figueira E, Duarte AC, Pereira E (2011) Impact of seasonal fluctuations on the sediment-mercury, its accumulation and partioning in Halimione portulacoides and Juncus maritimus collected from Ria de Aveiro coastal lagoon (Portugal). Water Air Soil Pollut 222:1–15. doi:10.1007/s11270-001-0799-4

    Article  CAS  Google Scholar 

  • Anyakora C, Ehianeta T, Umukoro O (2013) Heavy metal levels in soil samples from highly industrialized Lagos environment. Afr J Environ Sci Technol 7:917–924. doi:10.5897/AJEST2013.1543

    Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung I, Oh B (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166. doi:10.1016/j.jenvman.2014.12.045

    Article  CAS  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182. doi:10.1016/j.tim.2006.02.006

    Article  CAS  Google Scholar 

  • Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa MT (2012a) Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere 86:867–874. doi:10.1016/j.chemosphere.2011.10.039

    Article  Google Scholar 

  • Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012b) Tolerance and accumulation of copper in the salt-marsh shrub Halimione portulacoides. Mar Pollut Bull 64:721–728. doi:10.1016/j.marpolbul.2012.02.002

    Article  Google Scholar 

  • Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol methods 63:219–228. doi:10.1016/j.mimet.2005.03.018

    Article  CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Silva MFGM, Machado A, Bordalo AA, Vasconcelos MTSD (2010) Ability of salt marsh plants for TBT remediation in sediments. Environ Sci Pollut R 17:1279–1286. doi:10.1007/s11356-010-0307-1

    Article  CAS  Google Scholar 

  • Chaturvedi S, Chandra R, Rai V (2006) Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecol Eng 27:202–207. doi:10.1016/j.ecoleng.2006.02.008

    Article  Google Scholar 

  • Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria—prospects and potential. Appl Soil Ecol 95:38–53. doi:10.1016/j.apsoil.2015.05.011

    Article  Google Scholar 

  • CLSI (2012) Performance standard for antimicrobial susceptibility testing—document approved standard M100-S22. CLSI, Wayne

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Costa C, Jesus-Rydin C (2001) Site investigation on heavy metals contaminated ground in Estarreja—Portugal. Eng Geol 60:39–47. doi:10.1016/S0013-7952(00)00087-9

    Article  Google Scholar 

  • Couto MNPFS, Basto MCP, Vasconcelos MTSD (2011) Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere 84:1052–1057. doi:10.1016/j.chemosphere.2011.04.069

    Article  CAS  Google Scholar 

  • Deredjian A, Colinon C, Brothier E, Favre-Bonté S, Cournoyer B, Nazaret S (2011) Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa. Res Microbiol 162:689–700. doi:10.1016/j.resmic.2011.06.007

    Article  CAS  Google Scholar 

  • Duarte B, Delgado M, Caçador I (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836–840. doi:10.1016/j.chemosphere.2007.05.007

    Article  CAS  Google Scholar 

  • Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603

    CAS  Google Scholar 

  • Fidalgo C, Henriques I, Rocha J, Tacao M, Alves A (2016) Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization and influence of metal(loid) contamination. Environ Sci Pollut R. doi:10.1007/s11356-016-6208-1

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7, e42149. doi:10.1371/journal.pone.0042149

    Article  CAS  Google Scholar 

  • Ganeshan G, Kumar AM (2005) Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J Plant Interact 1:123–134. doi:10.1080/17429140600907043

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195. doi:10.1016/0003-2697(76)90514-5

    Article  CAS  Google Scholar 

  • Kim K, Roh SW, Chang H, Nam Y, Yoon J, Jeon CO, Oh H, Bae J (2009) Pseudomonas sabulinigri sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 59:38–41. doi:10.1099/lijs0.65866-0

    Article  CAS  Google Scholar 

  • Kim O, Cho Y, Lee K, Yoon S, Kim M, Na H, Park S, Jeon Y, Lee J, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs.0.038075-0

    Article  CAS  Google Scholar 

  • Livermore DM (2001) Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 47(3):247–250. doi:10.1093/jac/47.3.247

    Article  CAS  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3, e2702. doi:10.1371/journal.pone.0002702

    Article  Google Scholar 

  • Lopez-Velasco G, Tydings HA, Boyer RR, Falkinham JO, Ponder MA (2012) Characterization of interactions between Escherichia coli O157:H7 with epiphytic bacteria in vitro and on spinach leaf surfaces. Int J Food Microbiol 153:351–357. doi:10.1016/j.ijfoodmicro.2011.11.026

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. doi:10.1016/j.biotechadv.2010.12.001

    Article  CAS  Google Scholar 

  • Malik A, Aleem A (2011) Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and ground water. Environ Monit Assess 178:293–308. doi:10.1007/s10661-010-1690-2

    Article  CAS  Google Scholar 

  • Malik A, Jaiswal R (2000) Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World J microbiol Biot 16:177–182. doi:10.1023/A:1008905902282

    Article  CAS  Google Scholar 

  • Martins V (2011) Comunidade bacteriana endofítica cultivável de Halimione portulacoides. Dissertation, University of Aveiro. http://ria.ua.pt/handle/10773/7377

  • Mesaros N, Nordmann P, Plésia P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, Tulkens PM, Van Bambeke F (2007) Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 13(6):560–578. doi:10.1111/j.1469-0691.2007.01681.x

    Article  CAS  Google Scholar 

  • Mucha AP, Almeida CMR, Magalhães CM, Vasconcelos MTSD, Bordalo AA (2011) Salt marsh plant-microorganism interaction in the presence of mixed contamination. Int Biodeter Biodegr 65:326–333. doi:10.1016/j.ibiod.2010.12.005

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. doi:10.1016/S0378-1097(98)00555-2

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biot 51:730–750

    Article  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15. doi:10.1034/j.1399-3054.2003.00086.x

    Article  CAS  Google Scholar 

  • Pereira SIA, Barbosa L, Castro PML (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142. doi:10.1007/s13762-014-0614-z

    Article  CAS  Google Scholar 

  • Pereira SIA, Monteiro C, Vega AL, Castro PML (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97. doi:10.1016/j.ecoleng.2015.11.033

    Article  Google Scholar 

  • Pérez-Miranda S, Fernández FJ (2013) Siderophores: what are they, and how are they detected? In: Amaya MG, Pacheco SV (eds) The struggle for iron: pathogen vs host. Cinvestav, Mexico

    Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol methods 70:127–131. doi:10.1016/j.mimet.2007.03.023

    Article  Google Scholar 

  • Petatán-Sagahón I, Anducho-Reyes MA, Silva-Rojas HV, Arana-Cuenca A, Tellez-Jurado A, Cárdenas-Álvarez IO, Mercado-Flores Y (2011) Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. Int J Mol Sci 12:5522–5537. doi:10.3390/ijms12095522

    Article  Google Scholar 

  • Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:1–13. doi:10.3389/fmicb.2011.00065

    Article  Google Scholar 

  • Prado S, Montes J, Romalde JL, Barja JL (2009) Inhibitory activity of Phaeobacter strains against aquaculture pathogenic bacteria. Int Microbiol 12:107–114. doi:10.2436/20.1501.01.87

    Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos T R Soc Lon B 359:907–918. doi:10.1098/rstb.2003.1384

    Article  CAS  Google Scholar 

  • Proença DN, Francisco R, Santos CV, Lopes A, Fonseca L, Abrantes IMO, Morais PV (2010) Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS One 5(12), e15191. doi:10.1371/journal.pone.0015191

    Article  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160. doi:10.1016/j.chemosphere.2009.06.047

    Article  CAS  Google Scholar 

  • Reetha AK, Pavani SL, Mohan S (2014) Hydrogen cyanide production ability by bacterial antagonist and their antibiotics inhibition potential on Macrophomina phaseolina (Tassi.) Goid. Int J Curr Microbiol Appl Sci 3(5):172–178

    Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developmentsand applications. FEMS Microbiol Lett 278:1–9. doi:10.111/j.1574-6968.2007.00918.x

    Article  CAS  Google Scholar 

  • Shamim S, Rehman A (2013) Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress. J Basic Microbiol 55:374–381. doi:10.1002/jobm.201300038

    Article  Google Scholar 

  • Shi CL, Park HB, Lee JS, Ryu S, Ryu CM (2010) Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90–166 is through both auxin-dependent and -independent signaling pathways. Mol Cells 29:251–258. doi:10.1007/s10059-010-0032-0

    Article  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297. doi:10.1016/j.bbrc.2004.04.155

    Article  CAS  Google Scholar 

  • Sousa AI, Caçador I, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857. doi:10.1016/j.chemosphere.2007.07.012

    Article  CAS  Google Scholar 

  • Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350

    Article  CAS  Google Scholar 

  • Stout L, Nüsslein K (2010) Biotechnological potential of aquatic plant-microbe interactions. Curr Opin Biotechnol 21:339–345. doi:10.1016/j.copbio.2010.04.004

    Article  CAS  Google Scholar 

  • Tacão M, Moura A, Correia A, Henriques I (2014) Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water Res 48:100–107. doi:10.1016/j.watres.2013.09.021

    Article  Google Scholar 

  • Tacão M, Correia A, Henriques IS (2015) Low prevalence of carbapenem-resistant bacteria in river water: resistance is mostly related to intrinsic mechanisms. Microb Drug Resist 21:497–506. doi:10.1089/mdr.2015.0072

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Tarkowski P, Vereecke D (2014) Threats and opportunities of plant pathogenic bacteria. Biotechnol Adv 32:215–229. doi:10.1016/j.biotechadv.2013.11.001

    Article  Google Scholar 

  • Toribio J, Escalante AE, Caballero-Mellado J, González-González A, Zavala S, Souza V, Soberón-Chávez G (2011) Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Syst Appl Microbiol 34:531–535. doi:10.1016/j.syapm.2011.01.007

    Article  CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fhad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40. doi:10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  • Válega M, Lillebø AI, Pereira ME, Caçador I, Duarte AC, Pardal MA (2008a) Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor. Chemosphere 73:1224–1229. doi:10.1016/j.chemosphere.2008.07.053

    Article  Google Scholar 

  • Válega M, Lillebø AI, Pereira ME, Duarte AC, Pardal MA (2008b) Long-term effects of mercury in a salt marsh: hysteresis in the distribution of vegetation following recovery from contamination. Chemosphere 71:765–772. doi:10.1016/j.chemosphere.2007.10.013

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. doi:10.1016/j.copbio.2009.02.012

    Article  CAS  Google Scholar 

  • Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323. doi:10.1111/j.1574-6976.2010.00249.x

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. doi:10.5402/2011/402647

    Article  Google Scholar 

  • Xu Y, Zhou Y, Ruan J, Xu S, Gu J, Huang S, Zheng L, Yuan B, Wen L (2015) Endogenous nitric oxide in Pseudomonas fluorescens ZY2 as mediator against the combined exposure to zinc and cefradine. Ecotoxicology 24:835–843. doi:10.1007/s10646-015-1428-6

    Article  CAS  Google Scholar 

  • Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394. doi:10.1099/00221287-146-10-2385

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4