A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11356-014-3706-x below:

Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils

  • Ahmad MSA, Ashraf M, Tabassama Q, Hussain M, Firdous H (2011) Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biol Trace Elem Res 144:1229–1239. doi:10.1007/s12011-011-9099-5

    Article  CAS  Google Scholar 

  • Al Chami Z, Cavoski I, Mondelli D, Miano T (2013) Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil. Environ Sci Pollut Res 20(7):4766–4776. doi:10.1007/s11356-012-1439-2

    Article  Google Scholar 

  • Brawn PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Wat Res 34(16):3907–3916

    Article  Google Scholar 

  • Brennan MA, Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng 12:271–297

    Article  Google Scholar 

  • Burzynski M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42(4):505–510

    Article  CAS  Google Scholar 

  • Chen X-H, Gosset T, Thevenot DR (1990) Batch copper ion binding and exchange properties of peat. Water Res 24(12):1463–1471

    Article  CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37(4):297–303

    Article  CAS  Google Scholar 

  • Ci D, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010) Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiol Plant 32:365–373. doi:10.1007/s11738-009-0414-0

    Article  CAS  Google Scholar 

  • Cotter-Howells JD, Caporn S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342

    Article  CAS  Google Scholar 

  • Crist RH, Martin JR, Chonko J, Crist DR (1996) Uptake of metals on peat moss: an ion-exchange process. Environ Sci Technol 30(8):2456–2461. doi:10.1021/es950569d

    Article  CAS  Google Scholar 

  • Fisher K (2002) Removal of heavy metals from soil components and soil by natural chelating agents. Part I: displacement from clay minerals and peat by L-cysteine and L-penicillamine. Water Air Soil Poll 137:267–286

    Article  Google Scholar 

  • Gardea-Torresday JL, Tang L, Salvador JM (1996) Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. J Hasard Mat 48:191–206

    Article  Google Scholar 

  • Ghaly RA, Pyke JB, Ghaly AE, Ugursal VI (1999) Remediation of diesel-oil-contaminated soil using peat. Energ Source 21(9):785–799. doi:10.1080/00908319950014344

    Article  CAS  Google Scholar 

  • Gondek K (2009) Zinc content in maize (Zea mays L.) and soils fertilized with sewage sludge and sewage sludge mixed with peat. Pol J Environ Stud 18(3):359–368

    CAS  Google Scholar 

  • Gosset T, Trancart J-L, Thevenot DR (1986) Batch metal removal by peat. Kinetics and thermodynamics. Water Res 20(1):21–26

    Article  CAS  Google Scholar 

  • Gupta BS, Curran M, Hasan S, Ghosh TK (2009) Adsorption characteristics of Cu and Ni on Irish peat moss. J Environ Manage 90(2):954–960. doi:10.1016/j.jenvman.2008.02.012

    Article  Google Scholar 

  • Ho YS, Wase DAJ, Forster CF (1995) Batch nickel removal from aqueous solution by sphagnum moss peat. Water Res 29(5):1327–1332

    Article  CAS  Google Scholar 

  • Horacek J, Soukupova L, Puncochar M, Slezak J, Drahos J, Yoshida K, Tsutsumi A (1994) Purification of waste waters containing low concentrations of heavy metals. J Hasard Mat 37:69–76

    Article  CAS  Google Scholar 

  • Hu L, Diez-Rivas C, Hasan AR, Solo-Gabriele H, Fieber L, Cai Y (2010) Transport and interaction of arsenic, chromium, and copper associated with CCA-treated wood in columns of sand and sand amended with peat. Chemosphere 78(8):989–995. doi:10.1016/j.chemosphere.2009.12.019

    Article  CAS  Google Scholar 

  • Jarausch-Wehrheim B, Mocquot B, Mench M (1999) Absorption and translocation of sludge-borne zinc in field-grown maize (Zea mays L.). Eur J Agron 11:23–33

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Motowicka-Terelak T, Piotrowska M, Terelak H, Witek T (1993) Assessment of contamination level of soil and plants with heavy metals and sulphur, IUNG Pulawy Publisher, P(53): 1–20 (in Polish)

  • Kiikkila O, Pennanen T, Perkiomaki J, Derome J, Fritze H (2002) Organic material as a copper immobilising agent: a microcosm study on remediation. Basic Appl Ecol 3:245–253

    Article  CAS  Google Scholar 

  • Korzeniowska J, Stanislawska-Glubiak E, Igras J (2011) Applicability of energy crops for metal phytostabilization of soils moderately contaminated with copper, nickel and zinc. J Food Agric Environ 9(3–4):693–697

    CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2007) Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environ Pollut 145:365–373

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJ, Kochian L (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112(4):1715–1722. doi:10.1104/pp. 112.4.1715

    CAS  Google Scholar 

  • Lee S-J, Lee M-E, Chung JW, Park JH, Huh KY, Jun G-I (2013) Immobilization of lead from Pb-contaminated soil amended with peat moss. J Chem 2013:1–6. doi:10.1155/2013/509520

  • Lewinska K, Karczewska A (2013) Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus). Intern J Phytorem 15:91–104

    Article  CAS  Google Scholar 

  • Li ZH, Wang HY, Liang WB, Hu YL, Li KL (2002) Effect of the compound pollution of soil Cd, Zn and Pb on celery in red soil. J Central-South For Col 22(1):36–39

    CAS  Google Scholar 

  • Ma QY, Logan TJ, Traina SJ (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rock. Environ Sci Technol 29:1118–1126. doi:10.1021/es00004a034

    Article  CAS  Google Scholar 

  • Nwachukwu OI, Pulford ID (2008) Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil. Soil Use Manag 24:199–207. doi:10.1111/j.1475-2743.2007.00141.x

    Article  Google Scholar 

  • Plekhanov SE, Chemeris YK (2003) Early toxic effects of zinc, cobalt, and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39. Biol Bull 5:610–616, in Russian

    Google Scholar 

  • Qian J, Shan X, Wang Z, Tu Q (1996) Distribution and plant availability of heavy metals in different particle-size fractions of soil. Sci Total Environ 187:131–141

    Article  CAS  Google Scholar 

  • Qin F, Wen B, Shan X-Q, Xie Y-N, Liu T, Zhang S-Z, Khan SU (2006) Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ Pollut 144:669–680

    Article  CAS  Google Scholar 

  • Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol. Trace Elem Res 129:251–260. doi:10.1007/s12011-008-8283-8

    Article  Google Scholar 

  • Sękara A, Poniedzialek M, Ciura J, Jedraszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14(4):509–516

    Google Scholar 

  • Sharma DC, Forster CF (1993) Removal of hexavalent chromium using sphagnum moss peat. Water Res 27(7):1201–1208

    Article  CAS  Google Scholar 

  • Song F, Guo Y, Liu XY, Zhang YL (1996) Effect of compound pollution of cadmium, zinc and lead on spinach in brawn earth. Agro-Environ Prot 15(1):9–14

    Google Scholar 

  • Stanislawska-Glubiak E, Korzeniowska J, Kocon A (2012) Effect of the reclamation of heavy metal-contaminated soil on growth of energy willow. Pol J Environ Stud 21:187–192

    CAS  Google Scholar 

  • Waterlot C, Pruvot C, Ciesielski H, Douay F (2011) Effects of a phosphorus amendment and the pH of water used for watering on the mobility and phytoavailability of Cd, Pb and Zn in highly contaminated kitchen garden soils. Ecol Eng 37:1081–1093

    Article  Google Scholar 

  • Waterlot C, Bidar G, Pelfrene A, Roussel H, Fourrier H, Douay F (2013) Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere 23(2):143–159

    Article  CAS  Google Scholar 

  • Wrobel S, Nowak-Winiarska K (2011) Interaction of liming and earthworm humus in detoxification of soil contaminated with excess copper. Pol J Environ Stud 20:1611–1616

    CAS  Google Scholar 

  • Yang Y, Nan Z, Zhao Z, Wang S, Wang Z, Wang X (2011) Chemical fractionations and bioavailability of cadmium and zinc to cole (Brassica campestris L.) grown in the multi-metals contaminated oasis soil, northwest of China. J Environ Sci (China) 23(2):275–281

    Article  CAS  Google Scholar 

  • Zhang L, Zhang H, Guo W, Tian Y, Chen Z, Wei X (2012) Photosynthetic responses of energy plant maize under cadmium contamination stress. Adv Mater Res 356–360:283–286. doi:10.4028/www.scientific.net/AMR.356-360.283

    Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4