A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11302-006-9034-y below:

P2 purinergic receptor modulation of cytokine production

  • Fischer A (2001) Primary immunodeficiency diseases: an experimental model for molecular medicine. Lancet 357:1863–869

    Article  PubMed  CAS  Google Scholar 

  • Casanova J-L, Abel L (2004) The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol 4:55–6

    Article  PubMed  CAS  Google Scholar 

  • Billiau A, Heremans H, Matthys P (2003) The use of cytokine knockouts in animal models of autoimmune disease. In: Fantuzzi G (ed) Cytokine knockouts, 2nd edn. Humana, Totowa, NJ, pp 33–5

    Google Scholar 

  • Bathon JM, Martin RW, Fleischman RM et al (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343:1586-1593

    Article  PubMed  CAS  Google Scholar 

  • Lipsky PE, van der Heijde DM, St. Clair EW et al (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med 343:1594–602

    Article  PubMed  CAS  Google Scholar 

  • Doan T, Massarotti E (2005) Rheumatoid arthritis: an overview of new and emerging therapies. J Clin Pharmacol 45:751–62

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Hurd E, Cush J et al (2002) Treatment of rheumatoid arthritis with Ankinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate. Arthritis Rheum 46:614–24

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PN, Lachmann HJ, Aganna E et al (2004) Spectrum of clinical features in Muckle-Wells syndrome and response to Anakinra. Arthritis Rheum 50:607–12

    Article  PubMed  CAS  Google Scholar 

  • Lovell DJ, Bowyer SL, Solinger AM (2005) Interleukin-1 blockade by Anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum 52:1283–286

    Article  PubMed  CAS  Google Scholar 

  • Kauffman CL, Aria N, Toichi E et al (2004) A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J Invest Dermatol 123:1037–044

    Article  PubMed  CAS  Google Scholar 

  • Mannon PJ, Fuss IJ, Mayer L et al (2004) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 351:2069–079

    Article  PubMed  CAS  Google Scholar 

  • Di Virgilio F, Chiozzi P, Ferrari D et al (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–00

    Article  PubMed  Google Scholar 

  • Di Virgilio F, Baricordi OR, Romagnoli R et al (2005) Leukocyte P2 receptors: a novel target for anti-inflammatory and anti-tumor therapy. Curr Drug Targets: Cardiovasc Hematol Disord 5:85–9

    Article  Google Scholar 

  • Dubyak GR, Cliffor EE, Humphreys BD et al (1996) Expression of multiple ATP receptor subtypes during the differentiation and inflammatory activation of myeloid leukocytes. Drug Dev Res 39:269–78

    Article  CAS  Google Scholar 

  • Jin J, Dasari VR, Sistare FD et al (1998) Distribution of P2Y2 receptor subtypes on haematopoietic cells. Br J Pharmacol 123:789–94

    Article  PubMed  CAS  Google Scholar 

  • Gudipaty L, Humphreys BD, Buell G et al (2001) Regulation of P2X7 nucleotide receptor function in human monocytes by extracellular ions and receptor density. Am J Physiol Cell Physiol 280:C943–C953

    PubMed  CAS  Google Scholar 

  • Wiley JS, Dubyak GR (1989) Extracellular adenosine triphosphate increases cation permeability of chronic lymphocytic leukemic lymphocytes. Blood 73:1316–323

    PubMed  CAS  Google Scholar 

  • Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92:946–51

    PubMed  CAS  Google Scholar 

  • Gu BJ, Zhnag WY, Bendall LJ et al (2000) Expression of P2X7 purinoceptors on human lymphocytes and monocytes: evidence for non-functional P2X7 receptors. Am J Physiol Cell Physiol 279:C1189–C1197

    PubMed  CAS  Google Scholar 

  • Sluyter R, Barden JA, Wiley JS (2001) Detection of P2X purinergic receptors on human B lymphocytes. Cell Tissue Res 304:231–36

    Article  PubMed  CAS  Google Scholar 

  • Adinolfi E, Melchiorri L, Falzoni S et al (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99:706–08

    Article  PubMed  CAS  Google Scholar 

  • Suh B-C, Kim J-S, Namgung U et al (2001) P2X7 nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. J Immunol 166:6754–763

    PubMed  CAS  Google Scholar 

  • Bulanova E, Budagian V, Orinska Z et al (2005) Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells. J Immunol 174:3880–890

    PubMed  CAS  Google Scholar 

  • Idzko M, Panther E, Bremer HC et al (2003) Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br J Pharmacol 138:1244–250

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-W, Donnelly-Roberts DL, Namovic MT et al (2005) Pharmacological characterization of P2X7 receptors in rat peritoneal macrophages. Inflamm Res 54:119–26

    Article  PubMed  CAS  Google Scholar 

  • Solle M, Labasi J, Perregaux DG et al (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276:125–32

    Article  PubMed  CAS  Google Scholar 

  • Sung S-SJ, Young JD-E, Origlio AM et al (1985) Extracellular ATP perturbs transmembrane ion fluxes, elevates cytosolic [Ca2+], and inhibits phagocytosis in mouse macrophages. J Biol Chem 260:13442–3449

    PubMed  CAS  Google Scholar 

  • Steinberg TH, Newman AS, Swanson JA et al (1987) ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262:8884–888

    PubMed  CAS  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E et al (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–38

    Article  PubMed  CAS  Google Scholar 

  • Chessell IP, Simon J, Hibell AD et al (1998) Cloning and functional characterization of the mouse P2X7 receptor. FEBS Lett 439:26–0

    Article  PubMed  CAS  Google Scholar 

  • Coutinho-Silva R, Ojcius DM, Gorecki DC et al (2004) Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages. Biochem Pharmacol 69:641–55

    Article  CAS  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–301

    Article  PubMed  CAS  Google Scholar 

  • Collo G, Neidhart S, Kawashima E et al (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–283

    Article  PubMed  CAS  Google Scholar 

  • Hickman SE, El Khoury J, Greenberg S et al (1994) P2Z adenosine triphosphate receptor activity in cultured human monocyte-derived macrophages. Blood 84:2452–456

    PubMed  CAS  Google Scholar 

  • Falzoni S, Munerati M, Ferrari D et al (1995) The purinergic P2Z receptor of human macrophage cells. Clin Invest 95:1207–216

    Article  CAS  Google Scholar 

  • Humphreys BD, Dubyak GR (1996) Induction of the P2Z/P2X7 nucleotide receptor and associated phospholipase activity by lipopolysaccharide and IFN-γ in the human THP-1 monocytic cell line. J Immunol 157:5627–637

    PubMed  CAS  Google Scholar 

  • Berchtold S, Ogilvie ALJ, Bogdan C et al (1999) Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett 458:424–28

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D, La Sala A, Chiozzi P et al (2000) The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J 14:2466–476

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Luo L, Gustafson E et al (2002) P2Y13: identification and characterization of a novel Gαi-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705–13

    Article  PubMed  CAS  Google Scholar 

  • Mutini C, Falzoni S, Ferrari D et al (1999) Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J Immunol 163:1958–965

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–92

    PubMed  CAS  Google Scholar 

  • Luster AD (1998) Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–55

    Article  PubMed  CAS  Google Scholar 

  • Mukaida N (2003) Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 284:L566–L577

    PubMed  CAS  Google Scholar 

  • Warny M, Aboudola S, Robson SC et al (2001) P2Y6 nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J Biol Chem 276:26051–6056

    Article  PubMed  CAS  Google Scholar 

  • Cox MA, Gomes B, Plamer K et al (2005) The pyrimidinergic P2Y6 receptor mediates a novel release of proinflammatory cytokines and chemokines in monocytic cells stimulated with UDP. Biochem Biophys Res Commun 330:467–73

    Article  PubMed  CAS  Google Scholar 

  • Dubyak GR, el-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606

    PubMed  CAS  Google Scholar 

  • Boeynaems J-M, Communi D, Gonzalez NS et al (2005) Overview of the P2 receptors. Semin Thromb Hemost 31:139–49

    Article  PubMed  CAS  Google Scholar 

  • Korcok J, Raimundo LN, Du X et al (2005) P2Y6 nucleotide receptors activate NF-κB and increase survival of osteoclasts. J Biol Chem 280:16909–6915

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-κB in the immune system. Annu Rev Immunol 12:141–79

    PubMed  CAS  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–36

    Article  PubMed  CAS  Google Scholar 

  • Somers GR, Hammett FMA, Trute L et al (1998) Expression of the P2Y6 purinergic receptor in human T cells infiltrating inflammatory bowel disease. Lab Invest 78:1375–383

    PubMed  CAS  Google Scholar 

  • Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–46

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G, Pflanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19:641–44

    Article  PubMed  CAS  Google Scholar 

  • Langrish CL, McKenzie BS, Wilson NJ et al (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–05

    Article  PubMed  CAS  Google Scholar 

  • Watford WT, Hissong BD, Bream JH et al (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202:139–56

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal S, Ghilardi N, Xie M-H et al (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–914

    Article  PubMed  CAS  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–40

    Article  PubMed  CAS  Google Scholar 

  • Moss RB, Moll T, El-Kalay M et al (2005) Th1/Th2 cells in inflammatory disease states: therapeutic implications. Expet Opin Biol Ther 4:1887–896

    Article  Google Scholar 

  • Schnurr M, Then F, Galambos P et al (2000) Extracellular ATP and TNF-α synergise in the activation and maturation of human dendritic cells. J Immunol 165:4704–709

    PubMed  CAS  Google Scholar 

  • la Salla A, Sebastiani S, Ferrari D et al (2002) Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood 99:1715-1722

    Article  Google Scholar 

  • la Sala A, Ferrari D, Corinti S et al (2001) Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J Immunol 166:1611-1617

    PubMed  Google Scholar 

  • Wilkin F, Duhant X, Bruyns C et al (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166:7172–177

    PubMed  CAS  Google Scholar 

  • Wilkin F, Stordeur P, Goldman M et al (2002) Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived dendritic cells: dual effect on IL-12 and stimulation of IL-10. Eur J Immunol 32:2409–417

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea A, Rengaraju M, Valiante NM et al (1992) Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med 176:1387–398

    Article  PubMed  Google Scholar 

  • Schnurr M, Toy T, Shin A et al (2005) Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood 105:1582–589

    Article  PubMed  CAS  Google Scholar 

  • Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological properties similar as well as distinct from IL-12. Immunity 13:715–25

    Article  PubMed  CAS  Google Scholar 

  • Marteau F, Communi D, Boeynaems J-M et al (2004) Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotide diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 76:796–03

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–225

    PubMed  CAS  Google Scholar 

  • Nataraj C, Thomas DW, Tilley SL et al (2001) Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse. J Clin Invest 108:1229–235

    PubMed  CAS  Google Scholar 

  • Braun MC, Kelsall BL (2001) Regulation of interleukin-12 production by G-protein-coupled receptors. Microbes Infect 3:99–07

    Article  PubMed  CAS  Google Scholar 

  • Granstein RD, Ding W, Huang J et al (2005) Augmentation of cutaneous immune responses by ATPγS: purinergic agonists define a novel class of immunologic adjuvants. J Immunol 174:7725–731

    PubMed  CAS  Google Scholar 

  • Mizumoto N, Kumamoto T, Robson SC et al (2002) CD39 is the dominant Langehans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358–65

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Burgard EC, McGaraughty S et al (2002) A-317491, a potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Nat Acad Sci 99:17179–7184

    Article  PubMed  CAS  Google Scholar 

  • Gargett CE, Cornish JE, Wiley JS (1997) ATP, a partial agonist for the P2Z receptor of human lymphocytes. Br J Pharmacol 122:911–17

    Article  PubMed  CAS  Google Scholar 

  • Bianchi BR, Lynch KJ, Touma E et al (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:127–38

    Article  PubMed  CAS  Google Scholar 

  • Murgia M, Hanau S, Pizzo P et al (1993) Oxidized ATP; an irreversible inhibitor of the macrophage purinergic P2X receptor. J Biol Chem 268:8199–203

    PubMed  CAS  Google Scholar 

  • Beigi RD, Kertesy SB, Aquilina G et al (2003) Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol 140:507–19

    Article  PubMed  CAS  Google Scholar 

  • Hide I, Tanaka M, Inoue A et al (2000) Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J Neurochem 75:965–72

    Article  PubMed  CAS  Google Scholar 

  • Tonetti M, Sturla L, Giovine M et al (1995) Extracellular ATP enhances mRNA levels of nitric oxide synthase and TNFα in lipopolysaccharide-treated RAW 264.7 murine macrophages. Biochem Biophys Res Commun 214:125–30

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Kuhel DG, Salzman AL et al (2000) ATP suppression of interleukin-12 and tumour necrosis factor-α release from macrophages. Br J Pharmacol 129:909–14

    Article  PubMed  CAS  Google Scholar 

  • Kucher BM, Neary JT (2005) Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem 92:525–35

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16:457–99

    Article  PubMed  CAS  Google Scholar 

  • Cerretti DP, Lozlosky CJ, Mosley B et al (1992) Molecular cloning of the interleukin-1β converting enzyme. Science 256:97–00

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356:768–74

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267:2000–002

    Article  PubMed  CAS  Google Scholar 

  • Ayala JM, Yamin TT, Egger LA et al (1994) IL-1β-converting enzyme is present in monocytic cells as an inactive 45 kDa precursor. J Immunol 153:2592–599

    PubMed  CAS  Google Scholar 

  • Hogquist KA, Unanue ER, Chaplin DD (1991) Release of IL-1 from mononuclear phagocytes. J Immunol 147:2181–186

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Muhly M, Korom S et al (1990) Effects of Escherichia coli hemolysin on human monocytes. J Clin Invest 85:1746-1753

    Article  PubMed  CAS  Google Scholar 

  • Walev I, Weller U, Strauch S et al (1996) Selective killing of human monocytes and cytokine release provoked by sphingomyelinase (beta-toxin) of Staphylococcus aureus. Infect Immun 64:2974–979

    PubMed  CAS  Google Scholar 

  • Verhoef PA, Kertesy SB, Estacion M et al (2004) Maitotoxin induces biphasic interleukin-1β secretion and membrane blebbing in murine macrophages. Mol Pharmacol 66:909–20

    PubMed  CAS  Google Scholar 

  • Cordoba-Rodriguez R, Fang H, Lankford CSR et al (2004) Anthrax lethal toxin rapidly activates caspase-1/ICE and induces extracellular release of interleukin (IL)-1β and IL-18. J Biol Chem 279:20563–0566

    Article  PubMed  CAS  Google Scholar 

  • Kelk P, Claesson R, Hanstrom L et al (2005) Abundant secretion of bioactive interleukin-1β by human monocytes induced by Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun 73:453–58

    Article  PubMed  CAS  Google Scholar 

  • Perregaux D, Bhavsar K, Contillo L et al (2002) Antimicrobial peptides initiate IL-1β posttranslational processing: a novel role beyond innate immunity. J Immunol 168:3024–032

    PubMed  CAS  Google Scholar 

  • Elssner A, Duncan M, Gavrilin M et al (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release. J Immunol 172:4987–994

    PubMed  CAS  Google Scholar 

  • Perregaux D, Barberia J, Lanzetti AJ et al (1992) IL-1β maturation: evidence that mature cytokine formation can be induced specifically by nigericin. J Immunol 149:1294–303

    PubMed  CAS  Google Scholar 

  • Walev I, Reske K, Palmer M et al (1995) Potassium-inhibited processing of IL-1β in human monocytes. EMBO J 14:1607–614

    PubMed  CAS  Google Scholar 

  • Cheneval D, Ramage P, Kastelic T et al (1998) Increased mature interleukin-1β (IL-1β) secretion from THP- cells induced by nigericin is a result of activation of p45 IL-1β-converting enzyme processing. J Biol Chem 273:17846–7851

    Article  PubMed  CAS  Google Scholar 

  • Hogquist KA, Nett MA, Unanue ER et al (1991) Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci 88:8485–489

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RJ, Stam EJ, Downs J et al (1995) ATP induces the release of IL-1 from LPS primed cells in vivo. J Immunol 154:2821–828

    PubMed  CAS  Google Scholar 

  • Perregaux D, Gabel CA (1994) Interleukin1-β maturation and release in response to ATP and nigericin. J Biol Chem 269:15195–5203

    PubMed  CAS  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S et al (1997) Extracellular ATP triggers IL-1β release by activating the purinerigic P2Z receptor on human macrophages. J Immunol 159:1451–458

    PubMed  CAS  Google Scholar 

  • Grahames CBA, Michel AD, Chessell IP et al (1999) Pharmacological characterization of ATP- and LPS-induced IL-1β release in human monocytes. Br J Pharmacol 127:1915–921

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D, Villalba M, Chiozzi P et al (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–539

    PubMed  CAS  Google Scholar 

  • Ferrari D, Chiozzi P, Falzoni S et al (1997) Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:1–

    Article  Google Scholar 

  • Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147:56–1

    Article  PubMed  CAS  Google Scholar 

  • Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62: a potent antagonist of the P2Z-receptor of human lymphoctytes. Br J Pharmacol 122:911–17

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Virginio C, Surprenant A et al (1998) Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 54:22–2

    PubMed  CAS  Google Scholar 

  • Buell G, Chessell IP, Michel AD et al (1998) Blockade of human P2X7 receptor function with a monoclonal antibody. Blood 92:3521–528

    PubMed  CAS  Google Scholar 

  • Bradford MD, Soltoff SP (2002) P2X7 receptors activate protein kinase (MAPK) downstream of protein kinase C. Biochem J 366:745–55

    PubMed  CAS  Google Scholar 

  • Amstrup J, Novak I (2003) P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx. Biochem J 374:51–1

    Article  PubMed  CAS  Google Scholar 

  • Auger R, Motta I, Benihoud K et al (2005) A role for mitogen-activated protein kinaseErk1/2 activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem 280:28142–8151

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Rice J, Kertesy SB et al (2000) Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J Biol Chem 275:26792–6798

    PubMed  CAS  Google Scholar 

  • Verhoef PA, Estacion M, Schilling W et al (2003) P2X7 receptor-dependent blebbing and the activation of Rho-effector kinases, caspases, and IL-1β release. J Immunol 170:5728–738

    PubMed  CAS  Google Scholar 

  • Pfeiffer ZA, Aga M, Prabhu U et al (2004) The neucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho. J Leukoc Biol 75:1173–182

    Article  PubMed  CAS  Google Scholar 

  • Budagian V, Bulanova E, Brovko L et al (2003) Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-κB. J Biol Chem 278:1549–560

    Article  PubMed  CAS  Google Scholar 

  • Adinolfi E, Kim M, Young MT et al (2003) Tyrosine phosphorylation of HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors. J Biol Chem 278:37344–7351

    Article  PubMed  CAS  Google Scholar 

  • Feng Y-H, Wang L, Wang Q et al (2005) ATP stimulates GRK-3 phosphorylation and B-arrestin-2-dependent internalization of P2X7 receptor. Am J Physiol 288:C1342–C1356

    Article  CAS  Google Scholar 

  • Kim M, Jian LH, Wilson HL et al (2001) Proteomic and functional evidence for a P2X7 receptor signaling complex. EMBO J 20:6347–358

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D, Wesselborg S, Baurer MKA et al (1997) Extracellular ATP activates transcription factor NF-kB through the P2Z purinoreceptor by selectively targeting NF-κB p65 (RelA). J Cell Biol 139:1635–643

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D, Stroh C, Schulze-Osthoff K (1999) P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem 274:13205–3210

    Article  PubMed  CAS  Google Scholar 

  • Parvathenani LK, Tertyshnikova S, Creco CR et al (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–3317

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Marcos M, Fontanils U, Aguirre A et al (2005) Role of sodium in mitochondrial membrane depolarization induced by P2X7 receptor activation in submandibular glands. FEBS Lett 579:5407–413

    Article  PubMed  CAS  Google Scholar 

  • Humphreys BD, Dubyak GR (1996) Induction of the P2X/P2X7 nucleotide receptor and associated phospholipase D activity by lipopolysaccharide and IFNγ in the human THP-1 monocytic cell line. J Immunol 157:5627–637

    PubMed  CAS  Google Scholar 

  • Mehta VB, Hart J, Wewers MD (2001) ATP-stimulated release of interleukin (IL)-1β and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 276:3820–826

    Article  PubMed  CAS  Google Scholar 

  • Kahlenberg JM, Dubyak GR (2003) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol 286:C1100–C1108

    Article  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–067

    PubMed  CAS  Google Scholar 

  • Brough D, Le Feuvre RA, Wheeler RD et al (2003) Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1β and IL-1α from murine macrophages. J Immunol 170:3029–036

    PubMed  CAS  Google Scholar 

  • Gudipaty L, Munetz J, Verhoef PA et al (2003) Essential role for Ca2+ in regulation of IL-1β secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK293 cells. Am J Phyisol 285:C286–C299

    CAS  Google Scholar 

  • Perregaux DG, Gabel CA (1998) Human monocyte stimulus-coupled IL-1β posttranslational processing: modulation via monovalent cations. Am J Physiol 275:C1538–C1547

    PubMed  CAS  Google Scholar 

  • Laliberte RE, Eggler J, Gabel CA (1999) ATP treatment of human monocytes promotes caspase-1 maturation and externalization. J Biol Chem 274:36944–6951

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1β. Mol Cell 10:417–26

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Martinon F, Burns K (2003) NALPS: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4:95–04

    Article  PubMed  CAS  Google Scholar 

  • Dowds TA, Masumoto J, Zhu L et al (2004) Cryopyrin-induced interleukin 1β secretion in monocytic cells. J Biol Chem 279:21924–1928

    Article  PubMed  CAS  Google Scholar 

  • Bruey JM, Rruey-Sedano N, Newman R et al (2004) PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-κB and caspase-1 activation in macrophages. J Biol Chem 279:51897–1907

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–74

    Article  PubMed  CAS  Google Scholar 

  • Mariathasan S, Newton K, Monack DM et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–18

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie A, Wilson HL, Kiss-Toth E et al (2001) Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 8:825–35

    Article  Google Scholar 

  • Faria RX, DeFarias FP, Alves LA (2005) Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol 288:C260–C271

    Article  CAS  Google Scholar 

  • Mackenzie AB, Young MT, Adinolfi E et al (2005) Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. J Biol Chem 280:33968–3976

    Article  PubMed  CAS  Google Scholar 

  • Perregaux DG, Gabel CA (1998) Post-translational processing of murine IL-1: evidence that ATP-induced release of IL-1α and IL-1β occurs via a similar mechanism. J Immunol 160:2469–477

    PubMed  CAS  Google Scholar 

  • Hamon Y, Luciani M-F, Becq F et al (1997) Interleukin-1β secretion is impaired by inhibitors of the ATP binding cassette transporter, ABC1. Blood 90:2911–915

    PubMed  CAS  Google Scholar 

  • Bianco F, Pravettoni E, Colombo A et al (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. J Immunol 174:7268–277

    PubMed  CAS  Google Scholar 

  • Andrei C, Dazzi C, Lotti L et al (1999) The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 10:1463–475

    PubMed  CAS  Google Scholar 

  • Andrei C, Margiocco P, Poggi A et al (2005) Phospholipases C and A2 control lysosome-mediated IL-1β secretion: implications for inflammatory processes. Proc Natl Acad Sci 101:9745–750

    Article  Google Scholar 

  • Wiley JS, Dao-Ung LP, Gu BJ et al (2002) A loss-of function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukemia: a molecular study. Lancet 359:1114–119

    Article  PubMed  CAS  Google Scholar 

  • Li CM, Campbell SJ, Kumararatne DS et al (2002) Response heterogeneity of human macrophages to ATP is associated with P2X7 receptor expression but not to polymorphisms in the P2RX7 promoter. FEBS Lett 531:127–31

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Ibbotson RE, Orchard JA et al (2003) P2X7 polymorphism and chronic lymphocytic leukaemia: lack of correlation with incidence, survival and abnormalities of chromosome 12. Leukemia 17:2097–100

    Article  PubMed  CAS  Google Scholar 

  • Le Stunff H, Auger R, Kanellopoulos J et al (2004) The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 279:16918–6926

    Article  PubMed  CAS  Google Scholar 

  • Skarratt KK, Fuller SJ, Sluyter R et al (2005) A 5–intronic splice site polymorphism leads to a null allele of the P2X7 gene in 1–% of the Caucasian population. FEBS Lett 579:2675–678

    Article  PubMed  CAS  Google Scholar 

  • Cabrini G, Falzoni S, Forchap SL et al (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175:82–9

    PubMed  CAS  Google Scholar 

  • Gu BJM, Sluyter R, Skarratt KK et al (2004) An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279:31287–1295

    Article  PubMed  CAS  Google Scholar 

  • Sluyter R, Shemon AN, Wiley JS (2004) Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1β release from human monocytes. J Immunol 172:3399–405

    PubMed  CAS  Google Scholar 

  • Sluyter R, Dalitz JG, Wiley JS (2004) P2X7 receptor polymorphism impairs extracellular adenosine 5–triphosphate-induced interleukin-18 release from human monocytes. Genes Immun 5:588–91

    Article  PubMed  CAS  Google Scholar 

  • Chessell IP, Hatcher JP, Bountra C et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–96

    Article  PubMed  CAS  Google Scholar 

  • Joosten LA, Helsen MM, Saxne T et al (1999) IL-1α/β blockade prevents cartilage and bond destruction in murine type II collagen-induced arthritis, whereas TNFα blockade only ameliorates joint inflammation. J Immunol 163:5049–055

    PubMed  CAS  Google Scholar 

  • Williams RO, Marinova-Mutafchieva L, Feldmann M et al (2000) Evaluation of TNFα and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNFα/anti-CD4 therapy. J Immunol 165:7240–245

    PubMed  CAS  Google Scholar 

  • Kagari T, Doi H, Shimozato T (2002) The importance of IL-1β and TNFα, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis. J Immunol 169:1459–466

    PubMed  CAS  Google Scholar 

  • Baxter A, Bent J, Bowers K et al (2003) Hit-to-lead studies: the discovery of potent adamantine amide P2X7 receptor antagonists. Bioorg Med Chem Lett 13:4047–050

    Article  PubMed  CAS  Google Scholar 

  • Merriman GH, Ma L, Shum P et al (2005) Synthesis and SAR of novel 4,5-diarylimidazolines as potent P2X7 receptor antagonists. Bioorg Med Chem Lett 15:435–38

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli R, Baraldi PG, Di Virgilio F (2005) Recent progress in the discovery of antagonists acting at P2X7 receptor. Expert Opin Ther Pat 15:271–87

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4