Bartlett, R. J. (1988). Manganese redox reactions and organic interactions in soils. Manganese in Soils and Plants., 59–73.
Bascomb, C. L. (1968). Distribution of pyrophosphate extractable iron and organic carbon in soils of various groups. European Journal of Soil Science, 19, 251–268.
Baumann, Z., & Fisher, N. S. (2011). Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. Environmental Toxicology and Chemistry, 30(3), 747–756.
Bolton, K. A., & Evans, L. J. (1996). Cadmium adsorption capacity of selected Ontario soils. Canadian Journal of Soil Science, 76(2), 183–189.
Byrne, J. M., Klueglein, N., Pearce, C., Rosso, K. M., Appel, E., & Kappler, A. (2015). Redox cycling of Fe (II) and Fe (III) in magnetite by Fe-metabolizing bacteria. Science, 347(6229), 1473–1476.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108, 4516–4522.
Chen, X. P., Kong, W. D., He, J. Z., Liu, W. J., & Zhu, Y. G. (2008). Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? Journal of Plant Nutrition and Soil Science, 171(2), 193–199.
Chen, M. X., Cao, L., Song, X. Z., Wang, X. Y., Qian, Q. P., & Liu, W. (2014). Effect of iron plaque and selenium on cadmium uptake and translocation in rice seedlings (Oryza sativa) grown in solution culture. International Journal of Agriculture and Biology, 16(6), 1159–1164.
Cheng, H., Wang, M. Y., Wong, M. H., & Ye, Z. H. (2014). Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant and Soil, 375, 137–148.
Desantis, T. Z., Hugenholtz, P., Keller, K., Brodie, E. L., Larsen, N., Piceno, Y. M., Phan, R., & Andersen, G. L. (2006). Nast: a multiple sequence alignment server for comparative analysis of 16s rRNA genes. Nucleic Acids Research, 34, W394–W399.
Dong, M. F., Feng, R. W., Wang, R. G., Sun, Y., Ding, Y. Z., Xu, Y. M., Fan, Z. L., & Guo, J. K. (2016). Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and As accumulation in rice plant tissues. Plant and Soil, 404(1–2), 75–83.
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than blast. Bioinformatics, 26(19), 2460–2461.
Emerson, D., Fleming, E. J., & Mcbeth, J. M. (2010). Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology, 64(1), 561–583.
Fabisch, M., Beulig, F., Akob, D. M., & Kusel, K. (2013). Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations. Frontiers in Microbiology, 4, 390. https://doi.org/10.3389/fmicb.2013.00390.
Fu, Y. Q., Yang, X. J., Ye, Z. H., & Shen, H. (2016). Identification, separation and component analysis of reddish brown and non-reddish brown iron plaque on rice (Oryza sativa) root surface. Plant and Soil, 402(1–2), 277–290.
Fu, Y. Q., Yang, X. J., & Shen, H. (2018). Root iron plaque alleviates cadmium toxicity to rice (Qryza sativa) seedlings. Ecotoxicology and Environmental Safety, 161, 534–541.
Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1, 1–6.
Hall, G. E. M., Gauthier, G., Pelchat, J. C., Pelchat, P., & Vaive, J. E. (1996). Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. Journal of Analytical Atomic Spectrometry, 11(9), 787–796.
Hansel, C. M., Fendorf, S., Sutton, S., & Newville, M. (2002). Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology, 35(19), 3863–3868.
Hawkes, C. V., Deangelis, K. M., & Firestone, M. K. (2007). Root interactions with soil microbial communities and processes (pp. 1–29). Rhizosphere: An Ecological Perspective.
Hedrich, S., Schlömann, M., & Johnson, D. B. (2011). The iron-oxidizing proteobacteria. Microbiology, 157(6), 1551–1564.
Kappler, A., Schink, B., & Newman, D. K. (2005). Fe (III) mineral formation and cell encrustation by the nitrate-dependent Fe (II)-oxidizer strain BoFeN1. Geobiology, 3, 235–245.
Kosolsaksakul, P., Farmer, J. G., Oliver, I. W., & Graham, M. C. (2014). Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environmental Pollution, 187, 153–161.
Kot, A., & Namiesnik, J. (2000). The role of speciation in analytical chemistry. Trends in Analytical Chemistry, 19(2–3), 69–79.
Kuo, S. (1986). Concurrent sorption of phosphate and zinc, cadmium, or calcium by a hydrous ferric oxide. Soil Science Society of America Journal, 50, 1412–1419.
Lack, J. G., Chaudhuri, S. K., Kelly, S. D., Kemner, K. M., & Coates, J. D. (2002). Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe (II). Applied and Environmental Microbiology, 68(6), 2704–2710.
Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology & Biochemistry, 40(9), 2407–2415.
Li, X. L., Pan, G., Qin, Y. W., Hu, T. D., Wu, Z. Y., & Xie, Y. N. (2004). EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces II. Reversible adsorption. Journal of Colloid and Interface Science, 271(1), 28–34.
Liu, H. J., Zhang, J. L., Christie, P., & Zhang, F. S. (2008). Influence of iron plaque on uptake and accumulation of cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 394(2–3), 361–368.
Liu, R., Altschul, E. B., Hedin, R. S., Nakles, D. V., & Dzombak, D. A. (2014). Sequestration enhancement of metals in soils by addition of iron oxides recovered from coal mine drainage sites. Journal of Soil Contamination, 23, 374–388.
Liu, Y. Z., Xiao, T. F., Baveye, P. C., Zhu, J. M., Ning, Z. P., & Li, H. J. (2015). Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicology and Environmental Safety, 112, 122–131.
Liu, J. C., Wang, O. M., Li, J. J., & Liu, F. H. (2018). Mechanisms of extracellular electron transfer in the biogeochemical manganese cycle. Acta Microbiologica Sinica, 58(4), 546–559 (in Chinese).
McKeague, J. A. (1967). An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionate in comparison with oxalate as extractants of the accumulation products in Podzols and some other soils. Canadian Journal of Soil Science, 47, 95–99.
Neubauer, S. C., Toledo-Duran, G. E., Emerson, D., & Megonigal, J. P. (2007). Returning to their roots: iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere. Geomicrobiology, 24(1), 65–73.
Otte, M. L., Rozema, J., Koster, L., Haarsma, M. S., & Broekman, R. A. (1989). Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytologist, 111(2), 309–317.
Pietrzykowski, M., Socha, J., & van Doorn, N. S. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment, 470-471C, 501–510.
Pinto, E., & Ferreira, I. (2015). Cation transporters/channels in plants: tools for nutrient biofortification. Journal of Plant Physiology, 179, 64–82.
Pittman, J. K. (2005). Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytologist, 167(3), 733–742.
Randall, S. R., Sherman, D. M., Ragnarsdottir, K. V., & Collins, C. R. (1999). The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 63, 2971–2987.
Robson, T. C., Braungardt, C. B., Rieuwerts, J., & Worsfold, P. (2014). Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environmental Pollution, 184, 283–289.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., & Robinson, C. J. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.
Sebastian, A., & Prasad, M. N. V. (2016). Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron. Plant Biology, 18(6), 1008–1015.
Shuman, L. M. (1982). Separating soil iron and manganese-oxide fractions for microelement analysis. Soil Science Society of America Journal., 46(5), 1099–1102.
Tack, F. M. G., Ranst, E. V., Lievens, C., & Vandenberghe, R. E. (2006). Soil solution cd, cu and Zn concentrations as affected by short-time drying or wetting: the role of hydrous oxides of Fe and Mn. Geoderma, 137(1–2), 0–89.
Taylor, G. J., Crowder, A. A., & Rodden, R. (1984). Formation and morphology of an iron plaque on the roots of Typha latifolia L. grown in solution culture. American Journal of Botany, 71(5), 666–675.
Tebo, B. M., Johnson, H. A., McCarthy, J. K., & Templeton, A. S. (2005). Geomicrobiology of manganese (II) oxidation. Trends in Microbiology, 13, 421–428.
Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.
Tong, Y., & Guo, M. L. (2007). Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogenpseudomonas aeruginosa. Journal of Biological Inorganic Chemistry, 12(6), 735–750.
Weber, K. A., Achenbach, L. A., Coates, J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4(10), 752–764.
Wu, C., Ye, Z. H., Li, H., Wu, S. C., Dan, D., Zhu, Y. G., & Wong, M. (2012). Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? Journal of Experimental Botany, 63(8), 2961–2970.
Xu, B., & Yu, S. (2013). Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa). Annals of Botany, 111(6), 1189–1195.
Xu, W., Lan, H. C., Wang, H. J., Liu, H. M., & Qu, J. H. (2015). Comparing the adsorption behaviors of cd, cu and Pb from water onto Fe-Mn binary oxide, MnO2 and FeOOH. Frontiers of Environmental Science and Engineering, 9, 385–393.
Yang, J. X., Tam, F. Y., & Ye, Z. H. (2014). Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation. Plant and Soil, 374(1–2), 815–828.
Ying, S. C., Kocar, B. D., & Fendorf, S. (2012). Oxidation and competitive retention of arsenic between iron- and manganese oxides. Geochimica et Cosmochimica Acta, 96, 294–303.
Yue, J. Y., Zhang, X., & Liu, N. (2017). Cadmium permeates through calcium channels and activates transcriptomic complexity in wheat roots in response to cadmium stress. Genes and Genomics, 39(2), 1–14.
Zhang, W. L., Du, Y., Zhai, M. M., & Shang, Q. (2014). Cadmium exposure and its health effects: A 19-year follow-up study of a polluted area in China. Science of the Total Environment, 470-471, 224–228.
Zhou, H., Zeng, M., Zhou, X., Liao, B. H., Peng, P. Q., Hu, M., Zhu, W., Wu, Y. J., & Zou, Z. J. (2015). Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant and Soil, 386(1–2), 317–329.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4