A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11104-015-2606-2 below:

Phytoremediation: recent advances in plant-endophytic synergistic interactions

  • Adams N, Carroll D, Madalinski K, Rock S, Wilson T, Pivetz P (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, Cincinnati, Ohio, USA, pp 6–10

    Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mat 283:490–499

    Article  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575

    Article  CAS  PubMed  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytorem 14:35–47

    Article  Google Scholar 

  • Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM (2013a) Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeter Biodegr 85:331–336

    Article  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2013b) Ecology of alkane-degrading bacteria and their interaction with the plant. In: Bruijn FJD (ed) Molecular microbial ecology of the rhizosphere. Wiley. Hoboken, NJ, USA, pp 975–989

    Chapter  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014a) Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  PubMed  Google Scholar 

  • Afzal M, Shabir G, Tahseen R et al (2014b) Endophytic Burkholderia sp. strain PsJN improves plant growth and phytoremediation of soil irrigated with textile effluent. Clean Soil Air Water 42:1304–1310

    Article  CAS  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2009) Phytoremediation of polychlorinated biphenyls: New trends and promises. Environ Sci Technol 44:2767–2776

    Article  CAS  Google Scholar 

  • Alderete LGS, Talano MA, Ibannez SG, Purro S, Agostini E (2009) Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J Biotechnol 139:273–279

    Article  CAS  Google Scholar 

  • Alford EM, Pilon-Smits EAH, Paschke MW (2010) Metallophytes—a view from the rhizosphere. Plant Soil 337:33–50

    Article  CAS  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Arachevaleta M, Bacon C, Hoveland C, Radcliffe D (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90

    Article  Google Scholar 

  • Arslan M, Afzal M, Amin I, Iqbal S, Khan QM (2014) Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS One 9:e111208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Barac T, Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Application of poplar and its associated microorganisms for the in situ remediation of a BTEX contaminated groundwater plume. Int J Phytoremediation 11:416–424

    Article  CAS  PubMed  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  • Binet P, Portal J, Leyval C (2000) Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burken J (2003) Uptake and metabolism of organic compounds: Green-liver model. In: McCutcheon S, Schnoor JL (eds) Phytoremediation: Transformation and control of contaminants. Wiley, New York, pp 59–84

    Chapter  Google Scholar 

  • Cappa JJ, Pilon-Smits EA (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  PubMed  Google Scholar 

  • Che D, Meagher RB, Heaton AC, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Shen J, Zhang X, Pan F, Yang X, Feng Y (2014) The Endophytic bacterium, Sphingomonas SaMR12, improves the potential for Zinc phytoremediation by its host, Sedum alfredii. PLoS One 9:e106826. doi:10.1371/journal.pone.0106826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng S, Xiao J, Xiao H, Zhang L, Wu Z (2007) Phytoremediation of triazophos by Canna indica Linn. in a hydroponic system. Int J Phytorem 9:453–463

    Article  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: An overview. In Vitro Cell Dev Biol Plant 29:207–212

    Article  Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110

    Article  CAS  PubMed  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian P450 2E1. Proc Natl Acad Sci U S A 97:6287–6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leuceana leucocephala. Water Res 37:441–449

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci U S A 104:16816–16821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epuri V, Sorensen DL (1997) Benzo(a)pyrene and hexachlorobiphenyl contaminated soil: Phytoremediation potential. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, DC, pp 200–222

    Chapter  Google Scholar 

  • Fatima K, Afzal M, Imran A, Khan Q (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94:314–320

    Article  CAS  PubMed  Google Scholar 

  • Flocco CG, Lindblom SD, Smits EA (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytorem 6:289–304

    Article  CAS  Google Scholar 

  • Francova K, Mackova M, Macek T, Sylvestre M (2004) Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosterone B-356 to catalyse oxygenation of ortho-hydroxy chlorobiphenyls formed from PCBs by plants. Environ Pollut 127:41–48

    Article  CAS  PubMed  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte‐enhanced phytoremediation of the organochlorine herbicide 2, 4‐dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte‐mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  PubMed  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gammaglutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Ginés M, Hernández A, Pérez-Leblic M, Pastor J, Vangronsveld J (2014) Phytoremediation of soils co-contaminated by organic compounds and heavy metals: Bioassays with Lupinus luteus L. and associated endophytic bacteria. J Environ Manage 143:197–207

    Article  PubMed  CAS  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194

    Article  Google Scholar 

  • He CQ, Tan G, Liang X, Du W, Chen Y, Zhi G, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • Hsieh J-L, Chen C-Y, Chiu M-H, Chein M-f, Chang J-S, Endo G, Huang C-C (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    Article  CAS  PubMed  Google Scholar 

  • Iimura Y, Ikeda S, Sonoki T et al (2002) Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Appl Microbiol Biotechnol 59:246–251

    Article  CAS  PubMed  Google Scholar 

  • James CA, Xin G, Doty SL, Strand SE (2007) Degradation of low molecular weight volatile organic compounds by plants genetically modified with mammalian cytochrome P450 2E1. Environ Sci Technol 42:289–293

    Article  CAS  Google Scholar 

  • Jung S, Lee HJ, Lee Y, Kang K, Kim YS, Grimm B et al (2008) Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase overexpressing transgenic rice plants. Plant Mol Biol 67:535–546

    Article  CAS  PubMed  Google Scholar 

  • Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78:3504–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij J, van der Lelie D, Mergeay M, Tervahauta A (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  PubMed  Google Scholar 

  • Kawahigashi H, Hirose S, Inui H, Ohkawa H, Ohkawa Y (2005) Enhanced herbicide cross-tolerance in transgenic rice plants coexpressing human CYP1A1, CYP2B6, and CYP2C19. Plant Sci 168:773–781

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013a) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Mirza MS, Khan QM (2013b) Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil. Chemosphere 91:663–668

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48:12221–12228

    Article  CAS  PubMed  Google Scholar 

  • Khan MU, Sessitsch A, Harris M, Fatima K, Imran A, Arslan M, Shabir G, Khan Q, Afzal M (2015) Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci 5:755. doi:10.3389/fpls.2014.00755

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodadoust AP, Reddy KR, Maturi K (2005) Effect of different extraction agents on metal and organic contaminant removal from a field soil. J Hazard Mater 117:15–24

    Article  CAS  PubMed  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl H (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary D K (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul (in press). 10.1007/s00344-015-9490-0

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, Van Der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytorem 3:173–187

    Article  CAS  Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Mahaffee W, Kloepper J, Van Vuurde J, Van der Wolf J, Van den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22 improving plant productivity in rhizosphere bacteria. CSIRO, Melbourne 180

  • Mannisto MK, Tiirola MA, Puhakka JA (2001) Degradation of 2,3,4,6-tetraclorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12:291–301

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Bernal P, Almela C, Velez D, Garcia-Agustin P, Serrano R, Navarro-Avino J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–188

    Article  CAS  PubMed  Google Scholar 

  • Maturi K, Reddy KR (2008) Extractants for the removal of mixed contaminants from soils. Soil Sediment Contam 17:586–608

    Article  CAS  Google Scholar 

  • McCrady JK, McFarlene C, Lindstrom F (1987) The transport and affinity of substituted benzenes in soybean stems. J Exp Bot 38:1875–1890

    Article  CAS  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina V, Larson S, Bergstedt A, Mccutcheon S (2000) Phyto-removal of trinitrotoluene from water with batch kinetic studies. Water Res 34:2713–2722

    Article  CAS  Google Scholar 

  • Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci e4:120. doi:10.3389/fpls.2013.00120

    Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  PubMed  Google Scholar 

  • Moreira SM, Lima I, Ribeiro R, Guilhermino L (2006) Effects of estuarine sediment contamination on feeding and on key physiological functions of the polychaete Hediste diversicolor: Laboratory and in situ assays. Aquat Toxicol 78:186–201

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Nakamura A, Akizawa T, Pan-Hou H (2009) Genetic engineering of transgenic tobacco for enhanced uptake and bioaccumulation of mercury. Biol Pharm Bull 32:1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014) The endophyte Enterobacter sp. FD17: A maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50:249–262

    Article  CAS  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Pan M, Rademan S, Kunert K, Hastings J (1997) Ultrastructural studies on the colonization of banana tissue and Fusarium oxysporum f. sp. cubense race 4 by the endophytic bacterium Burkholderia cepacia. J Phytopath 145:479–486

    Article  Google Scholar 

  • Peng RH, Fu XY, Zhao W, Tian YS, Zhu B, Han HJ, Xu J, Yao QH (2014) Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. Environ Sci Technol 48:12824–12832

    Article  CAS  PubMed  Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation with transgenic trees. Z Naturforsch C 60:199–207

    CAS  PubMed  Google Scholar 

  • Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833

    Article  CAS  Google Scholar 

  • Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40:3054–3064

    Article  CAS  Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Tan H, Zhou S, Cao L (2014) Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J Hazard Mat 267:17–20

    Article  CAS  Google Scholar 

  • Quadt-Hallmann A, Kloepper J, Benhamou N (1997) Bacterial endophytes in cotton: Mechanisms of entering the plant. Can J Microbiol 43:577–582

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: Diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  PubMed  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J et al (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Boyle CJC, Sieber TN (eds) Schulz BJE. Microbial root endophytes, Springer Berlin Heidelberg, pp 1–13

    Google Scholar 

  • Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159

    Article  CAS  PubMed  Google Scholar 

  • Shehzadi M, Fatima K, Imran A, Mirza MS, Khan QA, Afzal M (2015) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst (in press). doi: 10.1080/11263504.2015.1022238

  • Sheng X, Gong J (2006) Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol Biochem 38:2587–2592

    Article  CAS  Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Goldie H, Germida JJ (1998) Enzymatic activity in root exudates of Dahurian wild rye (Elymus dauricus) that degrades 2-chlorobenzoic acid. J Agric Food Chem 46:5–7

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

  • Singh S, Sherkhane PD, Kale SP, Eapen S (2011) Expression of a human cytochrome P4502E1 in Nicotiana tabacum enhances tolerance and remediation of γ-hexachlorocyclohexane. New Biotechnol 28:423–429

    Article  CAS  Google Scholar 

  • Smith KP, Goodman RM (1999) Host-variation for interaction with beneficial plant associated microbes. Annu Rev Phytopathol 37:473–491

    Article  CAS  PubMed  Google Scholar 

  • Smucker AJM (1993) Soil environmental modifications of root dynamics and measurement. Annu Rev Phytopathol 31:191–216

    Article  Google Scholar 

  • Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytorem 12:535–549

    Article  CAS  Google Scholar 

  • Soleimani M, Akbar S, Hajabbasi MA (2011) Enhancing phytoremediation efficiency in response to environmental pollution stress. Plants Environ 23:10–14

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E et al (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  PubMed  Google Scholar 

  • Sørensen J, Nicoliasen MH, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology—from single-cell to whole-community analysis. Plant Soil 321:483–512

    Article  CAS  Google Scholar 

  • Sturz A, Christie B (2003) Beneficial microbial allelopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72:107–123

    Article  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Article  CAS  Google Scholar 

  • Sundberg SE, Ellington JJ, Evans JJ, Keys DA, Fisher JW (2003) Accumulation of perchlorate in tobacco plants: Development of a plant kinetic model. J Environ Monit 5:505–512

    Article  CAS  PubMed  Google Scholar 

  • Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:113. doi:10.3389/fpls.2015.00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghavi S, Weyens N, Vangronsveld J, van der Lelie D (2011) Improved phytoremediation of organic contaminants through engineering of bacterial endophytes of trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees, Springer Netherlands, pp 205–216

  • Tangahu BV, Sheikh-Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Engin 2011:31. doi:10.1155/2011/939161

    Article  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160

    Article  CAS  PubMed  Google Scholar 

  • Trapp S, Köhler A, Larsen LC, Zambrano KC, Karlson U (2001) Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. J Soil Sed 1:71–76

    Article  CAS  Google Scholar 

  • Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytorem 6:35–47

    Article  CAS  Google Scholar 

  • Uchida E, Ouchi T, Suzuki Y et al (2005) Secretion of bacterial xenobiotic-degrading enzymes from transgenic plants by an apoplastic expressional system: An applicability for phytoremediation. Environ Sci Technol 39:7671–7677

    Article  CAS  PubMed  Google Scholar 

  • Válega M, Lillebø A, Pereira M, Caçador I, Duarte A, Pardal M (2008) Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor. Chemosphere 73:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Van Aken B, Tehrani R, Schnoor JL (2011) Endophyte-assisted phytoremediation of explosives in poplar trees by Methylobacterium populi BJ001T. In: Pirttila AM, Frank AC (eds). Endophytes of forest trees: Biology and Applications. Springer London. pp 217–236

  • Van Dillewijn P, Couselo JL, Corredoira E, Delgado E, Wittich RM, Ballester A et al (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410

    Article  PubMed  CAS  Google Scholar 

  • Viktorová J, Novakova M, Trbolova L, Vrchotova B, Lovecka P, Mackova M, Macek T (2014) Characterization of transgenic tobacco plants containing bacterial bphc gene and study of their phytoremediation ability. Int J Phytorem 16:937–946

    Article  CAS  Google Scholar 

  • Visioli G, D′Egidio S, Sanangelantoni AM (2015) The bacterial rhizobiome of hyperaccumulators: Future perspectives based on omics analysis and advanced microscopy. Front Plant Sci 5:752. doi:10.3389/fpls.2014.00752

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier S (1997) Bacterial glutathione S-transferases: What are they good for? J Bacteriol 179:1431–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier S, Pagni M (2002) The elusive roles of bacterial glutathione S-transferases: New lessons from genomes. Appl Microbiol Biotechnol 58:138–146

    Article  CAS  PubMed  Google Scholar 

  • Wang G-D, Li Q-J, Luo B, Chen X-Y (2004) Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol 22:893–897

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3:475–486

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Taghavi S, Barac T et al (2009a) Bacteria associated with oak and ash on a TCE-contaminated site: Characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Poll Res 16:830–843

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Artois T et al (2009b) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009c) Phytoremediation: Plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, Lelie D, Taghavi S, Carleer R, Vangronsveld J (2013) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sed 13:176–188

    Article  CAS  Google Scholar 

  • Wu Z, Bañuelos GS, Lin Z-Q, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136. doi:10.3389/fpls.2015.00136

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elements Med Biol 18:339–353

    Article  CAS  Google Scholar 

  • Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Afzal M, Anees M, Malik RN, Campisano A (2014) Ecology and functional potential of endophytes in bioremediation: A molecular perspective. In: Gange AC (ed) Verma VC. Advances in endophytic research, Springer India, pp 301–320

    Google Scholar 

  • Yu X, Zhou P, Liu Y, Hu H (2005) Detoxification of cyanide by woody plants. Arch Environ Contam Toxicol 49:150–154

    Article  CAS  PubMed  Google Scholar 

  • Zamani N, Sabzalian MR, Khoshgoftarmanesh A, Afyuni M (2015) Neotyphodium endophyte changes phytoextraction of Zinc in Festuca arundinacea and Lolium perenne. Int J Phytorem 17:456–463

    Article  CAS  Google Scholar 

  • Zhang Y, Liu J (2011) Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J Hazardous Mat 189:357–362

    Article  CAS  Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mat 260:1100–1107

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4