A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11104-008-9815-x below:

Involvement of glutathione in heat shock– and hydrogen peroxide–induced cadmium tolerance of rice (Oryza sativa L.) seedlings

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Medeiros J-VR, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122 doi:10.1016/j.jplph.2005.01.007

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Goldsbrough PB (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239

    PubMed  CAS  Google Scholar 

  • Chen SL, Kao CH (1995a) Prior temperature exposure affects subsequent Cd-induced ethylene production in rice leaves. Plant Sci 104:135–138 doi:10.1016/0168-9452(94)04027-E

    Article  CAS  Google Scholar 

  • Chen SL, Kao CH (1995b) Glutathione reduces the inhibition of rice seedling root growth caused by cadmium. Plant Growth Regul 16:249–252 doi:10.1007/BF00024781

    Article  CAS  Google Scholar 

  • Chen Z, Silva H, Klessig RF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886 doi:10.1126/science.8266079

    Article  PubMed  CAS  Google Scholar 

  • Cho U-H, Seo N-H (2005) Oxidative stress in Arabidopsis thaliana exposed cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120 doi:10.1016/j.plantsci.2004.07.021

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants. Environ Pollut 98:29–36 reviewdoi:10.1016/S0269-7491(97)00110-3

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461 doi:10.1104/pp.118.4.1455

    Article  PubMed  CAS  Google Scholar 

  • Foster JG, Hess JL (1980) Response of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071 doi:10.1111/j.1365-3040.2005.01327.x

    Article  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel J-P, Blein J-P, Ranjeva R, Montillet J-L (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969 doi:10.1111/j.1365-3040.2006.01571.x

    Article  PubMed  CAS  Google Scholar 

  • Gechev T, Gadjev I, Van Breusegem F, Inzé D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714 doi:10.1007/s00018-002-8459-x

    Article  PubMed  CAS  Google Scholar 

  • Gong M, Chen B, Li X-G, Guo L-H (2001) Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J Plant Physiol 158:1125–1130 doi:10.1078/0176-1617-00327

    Article  CAS  Google Scholar 

  • Greger M, Landberg T (2008) Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil doi10.1007/s11104-008-9725-y

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chlorplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198 doi:10.1016/0003-9861(68)90654-1

    CAS  Google Scholar 

  • Hérouart D, Van Montagu M, Inzé D (1993) Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci USA 90:3108–3112 doi:10.1073/pnas.90.7.3108

    Article  PubMed  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995) A cadmium-sensitive, glutathione-deficient of Arabidopsis thaliana. Plant Physiol 107:1067–1073 doi:10.1104/pp.107.4.1067

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874 doi:10.1046/j.1365-3040.2003.01018.x

    Article  PubMed  CAS  Google Scholar 

  • Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80 doi:10.1111/j.1399-3054.2005.00490.x

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2007a) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:231–241 doi:10.1007/s11104-007-9357-7

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2007b) Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300:137–147 doi:10.1007/s11104-007-9396-0

    Article  CAS  Google Scholar 

  • Jarvis SC, Jones LHP, Hopper MJ (1976) Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil 44:179–191 doi:10.1007/BF00016965

    Article  CAS  Google Scholar 

  • Kocsy G, von Ballmoos P, Suter M, Rüegsegger A, Galli U, Szalai G, Galiba G, Brunold C (2000) Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211:528–536 doi:10.1007/s004250000308

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, von Ballmoos P, Rüegsegger A, Szalai G, Galiba G, Brunold C (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127:1147–1156 doi:10.1104/pp.127.3.1147

    Article  PubMed  CAS  Google Scholar 

  • Kuo MC, Kao CH (2004) Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedlings. Bot Bull Acad Sin 45:291–299

    CAS  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer C, Scott IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720 doi:10.1093/jexbot/49.321.713

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur metabolism and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671 doi:10.1016/j.femsre.2004.09.004

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JB, Russo A, Kinsella TJ, Glatstein E (1983) Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res 43:987–991

    PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194:360–367 doi:10.1007/BF00197536

    Article  CAS  Google Scholar 

  • Nieto-Sotelo J, Ho T-HD (1986) Effect of heat shock on the metabolism of glutathione in maize roots. Plant Physiol 82:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279 doi:10.1146/annurev.arplant.49.1.249

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interaction between biosynthesis, compartmentation and transport in the control glutathione homeostasis and signalling. J Exp Bot 53:1283–1304 doi:10.1093/jexbot/53.372.1283

    Article  PubMed  CAS  Google Scholar 

  • Orzech KA, Burke JJ (1988) Heat shock and the protection against metal toxicity in wheat leaves. Plant Cell Environ 11:711–714 doi:10.1111/j.1365-3040.1988.tb01154.x

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Zhy YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects of cadmium accumulation and tolerance. Physiol Plant 110:455–460 doi:10.1111/j.1399-3054.2000.1100405.x

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994a) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Stewart CR (1994b) Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105:619–627

    PubMed  CAS  Google Scholar 

  • Rouhier N, Lemoire SD, Jacquot JP (2008) The role of glutathione in photoxynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166 doi:10.1146/annurev.arplant.59.032607.092811

    Article  PubMed  CAS  Google Scholar 

  • Rüegsegger A, Schmutrz E, Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93:1579–1584

    Article  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1355 doi:10.1093/jexbot/53.372.1351

    Article  PubMed  Google Scholar 

  • Tsai Y-C, Hong C-Y, Liu L-F, Kao CH (2004) Relative importance of Na+ and Cl in NaCl-induced antioxidant systems in roots of rice seedlings. Physiol Plant 122:86–94 doi:10.1111/j.1399-3054.2004.00387.x

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523 doi:10.1016/S0168-9452(02)00159-0

    Article  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:83–294 doi:10.1016/j.jplph.2006.01.005

    Article  CAS  Google Scholar 

  • Wingsle G, Karpinski S (1996) Differeential redox regulation by glutathione of glutathione redutase and CuZn-superoxide dismutase gene expression in Pinus sylvestris L. needles. Planta 198:151–157 doi:10.1007/BF00197598

    CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574 doi:10.1104/pp.126.2.564

    Article  PubMed  CAS  Google Scholar 

  • Yu C-W, Murphy TM, Sung W-W, Lin C-H (2002) H2O2 treatment induced glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol 29:1081–108 doi:10.1071/PP01264

    Article  CAS  Google Scholar 

  • Yu C-W, Murphy TM, Lin C-H (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963 doi:10.1071/FP03091

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4