A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11033-012-1881-8 below:

Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors

  • Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937

    PubMed  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum. J Exp Bot 56(409):167–178

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  • Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35(5):347–354

    CAS  Google Scholar 

  • Bhandal IS, Kuar H (1992) Heavy metal inhibition of nitrate uptake and in vitro nitrate reductase in roots of wheat (Triticum aestivum L.). Indian J Plant Physiol 35:281–284

    CAS  Google Scholar 

  • Maier NA, McLaughlin MJ, Heap M, Butt M, Smart MK (2002) Effect of nitrogen source and calcitic lime on soil pH and potato yield, leaf chemical composition, and tuber cadmium concentrations. J Plant Nutr 25(3):523–544

    Article  CAS  Google Scholar 

  • Masclaux C, Valadier MH, Brugiere N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211(4):510–518

    Article  PubMed  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45(11):1681–1693

    Article  PubMed  CAS  Google Scholar 

  • Pankovic D, Plesnicar M, Arsenijevic-Maksimovic I, Petrovic N, Sakac Z, Kastori R (2000) Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot (Lond) 86(4):841–847

    Article  CAS  Google Scholar 

  • Polesskaya OG, Kashirina EI, Alekhina ND (2006) Effect of salt stress on antioxidant system of plants as related to nitrogen nutrition. Russ J Plant Physiol 53(2):186–192

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  PubMed  CAS  Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82:772–776

    Article  PubMed  CAS  Google Scholar 

  • Hassan MJ, Zhang G, Zhu Z (2008) Influence of cadmium toxicity on plant growth and nitrogen uptake in rice as affected by nitrogen form. J Plant Nutr 31(2):251–262

    Article  CAS  Google Scholar 

  • Grant CA, Bailey LD (1998) Nitrogen, phosphorus and zinc management effects on grain yield and cadmium concentration in two cultivars of durum wheat. Can J Plant Sci 78(1):63–70

    Article  CAS  Google Scholar 

  • Lorenz SE, Hamon RE, McGrath SP, Holm PE, Christenson TH (1994) Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. Eur J Soil Sci 45(4):159–165

    Article  CAS  Google Scholar 

  • Mitchell LG, Grant CA, Racz GJ (2000) Effect of nitrogen application on concentration of cadmium and nutrient ions in soil solution and in durum wheat. Can J Soil Sci 80(1):107–115

    Article  CAS  Google Scholar 

  • Wangstrand H, Eriksson J, Oborn I (2007) Cadmium concentration in winter wheat as affected by nitrogen fertilization. Eur J Agron 26(3):209–214

    Article  CAS  Google Scholar 

  • Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz KJ (2003) Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ 26(6):821–833

    Article  PubMed  CAS  Google Scholar 

  • Kovacik J, Klejdus B, Stork F, Hedbavny J (2011) Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants. J Agric Food Chem 59(9):5139–5149

    Article  PubMed  CAS  Google Scholar 

  • Olson DM, Cortesero AM, Rains GC, Potter T, Lewis WJ (2009) Nitrogen and water affect direct and indirect plant systemic induced defense in cotton. Biol Control 49(3):239–244

    Article  CAS  Google Scholar 

  • Knobeloch L, Salna B, Hogan A, Postle J, Anderson H (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspect 108(7):675–678

    Article  PubMed  CAS  Google Scholar 

  • Watmough SA, Dillon PJ (2003) Base cation and nitrogen budgets for seven forested catchments in central Ontario, 1983–1999. Forest Ecol Manag 177:155–177

    Article  Google Scholar 

  • Kloppel H, Fliedner A, Kordel W (1997) Behaviour and ecotoxicology of aluminium in soil and water—review of the scientific literature. Chemosphere 35(1–2):353–363

    Article  PubMed  CAS  Google Scholar 

  • Alloway BJ (1990) Cadmium. In: Alloway BJ (ed) Heavy metals in soils. Blackie & Son, Glasgow, UK, pp 100–339

    Google Scholar 

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25(2):327–342

    Article  CAS  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao K, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88(3):424–438

    CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14(11):2837–2847

    Article  PubMed  CAS  Google Scholar 

  • Bekesiova B, Hraska S, Libantova J, Moravcikova J, Matusikova I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35(4):579–588

    Article  PubMed  CAS  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell-death in cell-suspension and leaf disc assays using Evans blue. Plant Cell Tiss Org Cult 39(1):7–12

    Article  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Sanchez E, Lopez-Lefebre LR, Garcia PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158(5):593–598

    Article  CAS  Google Scholar 

  • Kumar GNM, Knowles NR (1993) Changes in lipid peroxidation and lipolytic and free radical scavenging enzyme activities during ageing and sprouting of potato (Solanum tuberosum L.) seed-tubers. Plant Physiol 102(1):115–124

    PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81(3):802–806

    Article  PubMed  CAS  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178(2):362–366

    Article  PubMed  CAS  Google Scholar 

  • Pan SQ, Ye XS, Kuc J (1991) A technique for detection of chitinase, beta-1,3-glucanase, and protein- patterns after a single separation using polyacrylamide-gel electrophoresis or isolelectrofocusing. Phytopathology 81(9):970–974

    Article  CAS  Google Scholar 

  • Pielichowska M, Wierzbicka M (2004) Uptake and localization of cadmium by Biscutella laevigata, a cadmium hyperaccumulator. Acta Biol Cracov Bot 46:57–63

    Google Scholar 

  • Salaj J, Petrovska B, Obert B, Pret’ova A (2005) Histological study of embryo-like structures initiated from hypocotyl segments of flax (Linum usitatissimum L.). Plant Cell Rep 24(10):590–595

    Article  PubMed  CAS  Google Scholar 

  • Cao WX, Tibbitts TW (1998) Response of potatoes to nitrogen concentrations differ with nitrogen forms. J Plant Nutr 21(4):615–623

    Article  PubMed  CAS  Google Scholar 

  • Pietila M, Lahdesmaki P, Pakonen T, Laine K, Saari E, Havas P (1990) Effect of the nitrogenous air-pollutants on changes in protein spectra with the onset of winter in the leaves and shoots of the bilberry (Vaccinium myrtillus L.). Environ Pollut 66(2):103–116

    Article  PubMed  CAS  Google Scholar 

  • Pietila M, Lahdesmaki P, Pietilainen P, Ferm A, Hytonen J, Patila A (1991) High nitrogen deposition causes changes in amino acid concentrations and protein spectra in needles of the scots pine (Pinus sylvestris). Environ Pollut 72(2):103–115

    Article  PubMed  CAS  Google Scholar 

  • Delpin MW, Goodman AE (2009) Nitrogen regulates chitinase gene expression in a marine bacterium. ISME J 3(9):1064–1069

    Article  PubMed  CAS  Google Scholar 

  • Goormachtig S, Lievens S, Van de Velde W, Van Montagu M, Holsters M (1998) Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plant Cell 10(6):905–915

    PubMed  CAS  Google Scholar 

  • Ahmad I, Hellebust JA (1988) The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two euryhaline microalgae. Plant Physiol 88(2):348–354

    Article  PubMed  CAS  Google Scholar 

  • Blum A, Ebercon A (1976) Genotypic responses in Sorghum to drought stress. III. Free proline accumulation and drought resistance. Crop Sci 16:428–431

    Article  CAS  Google Scholar 

  • Badisa VLD, Latinwo LM, Odewumi CO, Ikediobi CO, Badisa RB, Ayuk-Takem LT, Nwoga J, West J (2007) Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents. Environ Toxicol 22(2):144–151

    Article  PubMed  CAS  Google Scholar 

  • Liu DH, Kottke I (2003) Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy. J Biosci 28(4):471–478

    Article  PubMed  CAS  Google Scholar 

  • Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G (2006) Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ Exp Bot 58(1–3):253–260

    Article  CAS  Google Scholar 

  • Vazquez MD, Poschenrieder C, Barcelo J (1992) Ultrastructural effects and localization of low cadmium concentrations in bean roots. New Phytol 120(2):215–226

    Article  CAS  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230(4):755–765

    Article  PubMed  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol 44(6):791–796

    CAS  Google Scholar 

  • Pirselova B, Kuna R, Libantova J, Moravcikova J, Matusikova I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38(5):3437–3446

    Article  PubMed  CAS  Google Scholar 

  • Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J Plant Physiol 159(3):265–271

    Article  CAS  Google Scholar 

  • Yang Y-J, Cheng L-M, Liu Z-H (2007) Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci 172(3):632–639

    Article  CAS  Google Scholar 

  • Skorzynska-Polit E, Krupa Z (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plants. Arch Environ Contam Toxicol 50(4):482–487

    Article  PubMed  CAS  Google Scholar 

  • Corrales I, Poschenrieder C, Barcelo J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165(5):504–513

    Article  PubMed  CAS  Google Scholar 

  • Wallis C, Eyles A, Chorbadjian RA, Riedl K, Schwartz S, Hansen R, Cipollini D, Herms DA, Bonello P (2011) Differential effects of nutrient availability on the secondary metabolism of Austrian pine (Pinus nigra) phloem and resistance to Diplodia pinea. Forest Pathol 41(1):52–58

    Article  Google Scholar 

  • Muller HH, Marschner H (1997) Use of an in vitro assay to investigate the antioxidative defence potential of wheat genotypes under drought stress as influenced by nitrogen nutrition. Phyton Ann Rei Bot A 37(3):187–196

    Google Scholar 

  • Singh B, Kumar V, Antil RS, Ahlawat VS (1992) Cadmium intake by wheat as influenced by nitrogen and FYM application in sandy soil. Crop Res 5:243–248

    Google Scholar 

  • Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19(1):91–103

    Article  PubMed  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2005) Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms. Plant Cell Environ 28(11):1396–1409

    Article  CAS  Google Scholar 

  • Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20(8):441–448

    Article  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4