A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s11010-011-0881-7 below:

Attenuation of oxidative stress, inflammation and early markers of tumor promotion by caffeic acid in Fe-NTA exposed kidneys of Wistar rats

  • Irwing HM, Miles NH, Miles MG (1966) Analogues of nitrilotriacetic acid, and the stabilities of their proton and metal complexes. J Chem Soc A:1268–1275

    Google Scholar 

  • Awai M, Narasaki M, Yamanoi Y, Seno S (1979) Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 95:663–673

    PubMed  CAS  Google Scholar 

  • Hamazaki S, Okada S, Ebina Y, Midorikawa O (1985) Acute renal failure and glycosuria induced by ferric nitrilotriacetate in rats. Toxicol Appl Pharmacol 77:267–274

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Okada S et al (1993) Radical promoting free iron level in serum of rats treated with other iron chelate complexes. Acta Med Okayama 45:401–408

    Google Scholar 

  • Zhang D, Okada S et al (1995) An improved simple colorimetric method for the quantization of non-bound iron in serum. Biochem Mol Biol Int 35:635–641

    PubMed  CAS  Google Scholar 

  • Jacobs A (1980) In: Jacobs A, Worwood M (eds) Iron in biochemistry and medicine, II. Academic Press, New York, pp 427–459

    Google Scholar 

  • Chen L, Wang Y et al (2001) Molecular mechanisms by which iron induces nitric oxide synthesis in cultured proximal tubule cells. Exp Nephrol 9(3):198–204

    Article  PubMed  CAS  Google Scholar 

  • Toyokuni S (2002) Iron and carcinogenesis: from Fenton reaction to target genes. Redox Rep 7(4):189–197

    Article  PubMed  CAS  Google Scholar 

  • Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20:553–566

    Article  PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (2002) The Haber–Weiss cycle-70 years later: an alternative view. Redox Rep 7:55–57

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Sharma S, Kaur I et al (2009) Renoprotective effects of sesamol in ferric nitrilotriacetate (Fe-NTA)-induced oxidative renal injury in rats. Basic Clin Pharmacol Toxicol 104:316–321

    Article  PubMed  CAS  Google Scholar 

  • Iqbal M, Okazaki Y, Okada S (2009) Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem 324:157–164

    Article  PubMed  CAS  Google Scholar 

  • Rafter JJ (2002) Scientific basis of biomarkers and benefits of functional foods for reduction of disease risk: cancer. Br J Nutr 88:219–224

    Article  Google Scholar 

  • Sarkar A, Bhaduri A (2001) Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochem Biophys Res Commun 284:173–178

    Article  PubMed  CAS  Google Scholar 

  • Mattila P, Kumpulainen J (2002) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem 50:3660–3667

    Article  PubMed  CAS  Google Scholar 

  • Shahidi F, Naczk M (1995) Food phenolics. Sources, chemistry, effects, applications. Technomic Publishing Company, Inc., Lancaster

    Google Scholar 

  • Chan JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxy cinnamic acid compounds. J Agric Food Chem 45:2374–2378

    Article  Google Scholar 

  • Psotova J, Lasovsky J, Vicor J (2003) Metal chelating properties, electrochemical Scavenging and cytoprotective activities of six natural phenolics. Biomed Pap 147:147–153

    CAS  Google Scholar 

  • Chao CY, Mong MC, Chan KC, Yin MC (2010) Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol Nutr Food Res 54:388–395

    Article  PubMed  CAS  Google Scholar 

  • Gulcin I (2006) Antioxidant activity of caffeic acid. Toxicology 217:213–220

    Article  PubMed  Google Scholar 

  • Jung UJ, Lee MK, Park YB, Jeon SM et al (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318:476–483

    Article  PubMed  CAS  Google Scholar 

  • Athar M, Iqbal M (1998) Ferric nitrilotriacetate promotes N-diethyl nitrosoamine-induced renal tumorigenesis in rat: implications for the involvement of oxidative stress. Carcinogenesis 19:1133–1139

    Article  PubMed  CAS  Google Scholar 

  • Wright JR, Colby HD, Miles PR (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304

    Article  PubMed  CAS  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobezene oxide as the hepatotoxic metabolite. Pharmacology 11:151

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Glutathione level in rat brain. J Biol Chem 250:4480–4575

    Google Scholar 

  • Stripe F, Della Corte E (1969) The regulation of rat liver xanthine oxidase. J Biol Chem 244:3855–3863

    Google Scholar 

  • Pick A, Keisari Y (1981) Superoxide anion and H2O2 production by chemically elicited peritoneal macrophages—induction by multiple non-phagocytic stimulus. Cell Immunol 59:301–308

    Article  PubMed  CAS  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Mohandas M, Marshall JJ, Duggin GG, Horvath JS, Tiller D (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidney. Cancer Res 44:5086–5091

    PubMed  CAS  Google Scholar 

  • Kornberg A (1955) Lactic dehydrogenase of muscle. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol I. Academic Press, New York, pp 441–443

    Chapter  Google Scholar 

  • Orlowski M, Meister A (1973) γ-Glutamyl cyclotransferase distribution, isozymic forms and specificity. J Biol Chem 248:2836–2844

    PubMed  CAS  Google Scholar 

  • Benson AM, Hunkalar MJ, Talalay P (1980) Increase of NADPH, quinone reductase activity by dietary antioxidant: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 77:5116–5220

    Google Scholar 

  • Kanter MW (1975) Clinical chemistry. The Bobber Merill Company Inc, New York

    Google Scholar 

  • Hare RS (1950) Endogenous creatinine in serum and urine. Proc Soc Exp Biol Med 74:148–151

    PubMed  CAS  Google Scholar 

  • Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  PubMed  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  • Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49:1006–1015

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TG, Simsiman RC, Boutwell RK (1975) Induction of the polyamine biosynthetic enzymes in mouse epidermis by tumor promoting agents. Cancer Res 35:1662–1670

    PubMed  Google Scholar 

  • Athar M, Raza H, Bickers D, Mukhtar H (1990) Inhibition of benzoyl peroxide-mediated tumor promotion in 7,12-dimethylbenz(a)anthracene-initiated skin of sencar mice by antioxidants, nordihydroguaretic acid and diallyl sulphide. J Invest Dermatol 94:162–165

    Article  PubMed  CAS  Google Scholar 

  • Smart RC, Huang MT, Conney AA (1986) Sn 1,2, diacylglycerols mimic the effects of TPA in vivo by inducing biochemical changes associated with tumor promotion in mouse epidermis. Carcinogenesis 7:1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Giles KW, Myers A (1965) An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature 206:63

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Wu Z, Qiu L (2001) Effect of nitric oxide on iron-mediated cytotoxicity in primary cultured renal proximal tubules. Cell Biochem Funct 19(4):237–247

    Article  PubMed  CAS  Google Scholar 

  • Kadkhodaee MaG (2004) The role of nitric oxide in iron-induced rat renal injury. Hum Exp Toxicol 23:533–536

    Article  PubMed  CAS  Google Scholar 

  • Umemura TY, Sai K, Takagi A, Hasegawa R, Kurakawa Y (1990) Oxidative DNA damage, lipid peroxidation and induced in rat kidney after ferric nitrilotriacetate administration. Cancer Lett 54:95–100

    Article  PubMed  CAS  Google Scholar 

  • Taso B, Curthoys NP (1980) The absolute asymmetry of orientation of gamma-glutamyl transpeptidase and amino-peptidase on the external surface of the rat renal brush order membrane. J Biol Chem 255:7708–7711

    Google Scholar 

  • Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1989) Damage to the bases in DNA induction by hydrogen peroxide and ferric ion chelates. J Biol Chem 264:20509–20512

    PubMed  CAS  Google Scholar 

  • El-Maraghy SA, Sherine MR, El-Sawalhi MM (2009) Hepatoprotective potential of crocin and curcumin against iron overload-induced biochemical alterations in rat. Afr J Biochem Res 5:215–221

    Google Scholar 

  • Iqbal M, Okazaki Y, Okada S (2007) Probucol modulates iron nitrilotriacetate (Fe-NTA)-dependent renal carcinogenesis and hyperproliferative response: diminution of oxidative stress. Mol Cell Biochem 304:61–69

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Midorikawa O (1982) Induction of rat renal adenocarcinoma by ferric nitrilotriacetate. Jpn Arch Intern Med 29:485–491

    CAS  Google Scholar 

  • Mizuno R, Kawabata T, Sutoh Y et al (2006) Oxidative renal tubular injuries induced by aminocarboxylate-type iron (III) coordination compounds as candidate renal carcinogens. Biometals 19:675–683

    Article  PubMed  CAS  Google Scholar 

  • Jahangir T, Sultana S (2006) Modulatory effects of Pluchea lanceolata against chemically induced oxidative damage, hyperproliferation and two-stage renal carcinogenesis in Wistar rats. Mol Cell Biochem 291:175–185

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Sharma S, Sultana S (2004) Attenuation of potassium bromate induced nephrotoxicity by coumarin (1,2-benzopyrone) in Wistar rats: chemoprevention against free radical-mediated renal oxidative stress and tumor promotion response. Redox Rep 9(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (1992) Iron depletion defense against intracellular infections and neoplasia. Life Sci 50:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Sehirli O, Sener G (2010) Protective effect erdosteine against naphthalene-induced oxidative stress in rats. Marmara Pharm J 14:67–73

    Google Scholar 

  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386

    Article  PubMed  CAS  Google Scholar 

  • Noiri E, Peresleni T, Miller F, Goligorsky MS (1996) In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 97:2377–2383

    Article  PubMed  CAS  Google Scholar 

  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Athar M, Alam MS (2009) Dietary supplementation of silymarin protects against chemically induced nephrotoxicity, inflammation and renal tumor promotion response. Investig New Drugs 28:703–713

    Article  Google Scholar 

  • Auvinen M, Paasinen A, Andersson LC, Holtta E (1992) Ornithine decarboxylase activity is critical for cell transformation. Nature 360:355–358

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TG, Megosh LC, Gilliard G, Soler AP (1997) Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 57:2630–2637

    PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4