A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10909-018-1904-5 below:

The Athena X-ray Integral Field Unit (X-IFU)

Abstract

The X-ray Integral Field Unit (X-IFU) of the Advanced Telescope for High-ENergy Astrophysics (Athena) large-scale mission of ESA will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5\(^{\prime \prime }\) pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV (FWHM) up to 7 keV. The core scientific objectives of Athena drive the main performance parameters of the X-IFU. We present the current reference configuration of the X-IFU, and the key issues driving the design of the instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. K. Mitsuda et al., Proc. SPIE 9144, 91442A (2014). https://doi.org/10.1117/12.2057199

    Article  Google Scholar 

  2. R. Kelley et al., Proc. SPIE 9905, 99050V (2016). https://doi.org/10.1117/12.2232509

    Article  Google Scholar 

  3. K. Nandra et al. (2013). arXiv:1306.2307 [astro-ph.HE]

  4. D. Barret et al., Proc. SPIE 9905, 99052F (2016). https://doi.org/10.1117/12.2232432

    Article  Google Scholar 

  5. C. Goodwin Pappas et al., J. Low Temp. Phys. This Special Issue (2018)

  6. L. Gottardi et al., J. Low Temp. Phys. This Special Issue (2018)

  7. N. Wakeham et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1898-z

    Article  Google Scholar 

  8. K. Sakai et al., J. Low Temp. Phys. This Special Issue (2018)

  9. P. Khosropanah et al., J. Low Temp. Phys. This Special Issue (2018)

  10. A. Miniussi et al., J. Low Temp. Phys. This Special Issue (2018)

  11. K. Nagayoshi et al., J. Low Temp. Phys. This Special Issue (2018)

  12. M. Ridder et al., J. Low Temp. Phys. This Special Issue (2018)

  13. P. Peille et al., J. Low Temp. Phys. This Special Issue (2018)

  14. R. den Hartog et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1901-8

    Article  Google Scholar 

  15. H. Hakamatsu et al., J. Low Temp. Phys. This Special Issue (2018)

  16. M. Bruijn et al., J. Low Temp. Phys. This Special Issue (2018)

  17. N. DeNigris et al., J. Low Temp. Phys. This Special Issue (2018)

  18. D. Prêle et al., J. Low Temp. Phys. This Special Issue (2018)

  19. J. van der Kuur et al., J. Low Temp. Phys. This Special Issue (2018)

  20. E. Cucchetti et al., J. Low Temp. Phys. This Special Issue (2018)

  21. C. Macculi et al., Proc. SPIE 9905, 99052K (2016). https://doi.org/10.1117/12.2231298

    Article  Google Scholar 

  22. M. Biasotti et al., J. Low Temp. Phys. This Special Issue (2018)

  23. M. D’ Andrea et al., J. Low Temp. Phys. PE-52 This Special Issue (2018)

  24. M. D’ Andrea et al., J. Low Temp. Phys. PE-53 This Special Issue (2018)

  25. S. Lotti et al., Exp. Astron. (2017). https://doi.org/10.1007/s10686-017-9538-1

    Article  ADS  Google Scholar 

  26. A. Miniussi et al., J. Low Temp. Phys. 176, 815 (2014). https://doi.org/10.1007/s10909-014-1104-x

    Article  ADS  Google Scholar 

  27. S. Stever et al., J. Low Temp. Phys. This Special Issue (2018)

  28. M. Barbera et al., J. Low Temp. Phys. 184, 706 (2016). https://doi.org/10.1007/s10909-016-1501-4

    Article  ADS  Google Scholar 

  29. M. Barbera et al., J. Low Temp. Phys. This Special Issue (2018)

  30. L. Sciortino et al., J. Low Temp. Phys. This Special Issue (2018)

  31. N. Yamasaki et al., J. Low Temp. Phys. This Special Issue (2018)

Download references

Acknowledgements

The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with further ESA member state contributions from Belgium, Finland, Germany, Poland, Spain, Switzerland and two partners from outside Europe (the USA and Japan). The research leading to the results on thermal filters and non-X-ray background has received funding from European Unions Horizon 2020 Program under the AHEAD Project (Grant Agreement No. 654215). A. Rozanska was supported by Polish National Science Center Grants Nos. 2015/17/B/ST9/03422, 2015/18/M/ST9/00541.

Author information Authors and Affiliations
  1. IRAP CNRS, Université Paul Sabatier, 9 av. du colonel Roche, 31028, Toulouse Cedex 4, France

    F. Pajot & D. Barret

  2. CNES, 18 av. Edouard Belin, 31401, Toulouse Cedex 9, France

    T. Lam-Trong, F. Douchin, H. Geoffray, M. Le Du, J.-M. Mesnager & P. Peille

  3. SRON, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands

    J.-W. den Herder & R. den Hartog

  4. INAF/IAPS, via Fosso del Cavaliere 100, 00133, Rome, Italy

    L. Piro & C. Macculi

  5. INAF-IASF, via Gobetti 101, 40129, Bologna, Italy

    M. Cappi

  6. Division of Geophysics and Astronomy, Department of Physics, University of Helsinki, P.O. Box 48, 00014, Helsinki, Finland

    J. Huovelin

  7. NASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD, 20771, USA

    R. Kelley & C. Kilbourne

  8. Centro de Astrobiología, CSIC/INTA, Ctra de Torrejón a Ajalvir, 4 km, 28850, Torrejón de Ardoz, Madrid, Spain

    J. M. Mas-Hesse

  9. Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, 252-5210, Japan

    K. Mitsuda

  10. Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, 1290, Versoix, Switzerland

    S. Paltani

  11. Institute for Astrophysics and Geophysics, University of Liège, Allée du 6 Août 19c, 4000, Liège, Belgium

    G. Rauw

  12. Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, ul. Bartycka 18, 00-716, Warsaw, Poland

    A. Rozanska

  13. ECAP, University of Erlangen-Nüremberg, Sternwartstr. 7, 96049, Bamberg, Germany

    J. Wilms

  14. Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archira 36, 90123, Palermo, Italy

    M. Barbera

  15. INAF/Osservatorio Astronomico di Palermo G.S. Vaiana, Piazza del Parlamento 1, 90134, Palermo, Italy

    M. Barbera

Authors
  1. F. Pajot
  2. D. Barret
  3. T. Lam-Trong
  4. J.-W. den Herder
  5. L. Piro
  6. M. Cappi
  7. J. Huovelin
  8. R. Kelley
  9. J. M. Mas-Hesse
  10. K. Mitsuda
  11. S. Paltani
  12. G. Rauw
  13. A. Rozanska
  14. J. Wilms
  15. M. Barbera
  16. F. Douchin
  17. H. Geoffray
  18. R. den Hartog
  19. C. Kilbourne
  20. M. Le Du
  21. C. Macculi
  22. J.-M. Mesnager
  23. P. Peille
Corresponding author

Correspondence to F. Pajot.

About this article Cite this article

Pajot, F., Barret, D., Lam-Trong, T. et al. The Athena X-ray Integral Field Unit (X-IFU). J Low Temp Phys 193, 901–907 (2018). https://doi.org/10.1007/s10909-018-1904-5

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4