Bjorkman, D.: Nonsteroidal anti-inflammatory drug-associated toxicity of the liver, lower gastrointestinal tract, and esophagus. Am. J. Med. 105(5A), 17S–21S (1998)
Demin, O.V., Lebedeva, G.V., Kolupaev, A.G., Zobova, E.A., Plyusnina, T.Yu., Lavrova, A.I., Dubinsky, A., Goryacheva, E.A., Tobin, F., Goryanin, I.I.: Kinetic modelling as a modern technology to explore and modify living cells. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology, pp. 59–103. Natural Computing Series, Springer-Verlag (2004)
Fromenty, B., Pessayre, D.: Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther. 67, 101–154 (1995)
Vessey, D.A., Hu, J., Kelly, M.: Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria. J. Biochem. Toxicol. 11, 73–78 (1996)
Kaplan, E.H., Kennedy, J., Davis, J.: Effects of salicylate and other benzoates on oxidative enzymes of the tricarboxylic acid cycle in rat tissue homogenates. Archives of Biochemistry 51, 47–61 (1954)
Miyahara, J.T., Karler, R.: Effect of salicylate on oxidative phosphorylation and respiration of mitochondrial fragments. Biochem. J. 97, 194–198 (1965)
Haas, R., Parker, W.D., Stumpf, D. Jr., Erugen, L.A.: Salicylate-induced loose coupling: protonmotive force measurements. Biochem. Pharmacol. 34, 900–902 (1985)
Bohnensack, R., Sel’kov, E.E.: Stoichiometric regulation in the citric acid cycle. I. Linear interactions of intermediates. Stud. Biophys. B.65, 161–173 (1977a)
Bohnensack, R., Sel’kov, E.E.: Stoichiometric regulation in the citric acid cycle. II. Non-linear interactions. Stud. Biophys. B.66, 47–63 (1977b)
Dynnik, V.V., Temnov, A.V.: A mathematical model of the pyruvate oxidation in liver mitochondria. 1. Regulation of the Krebs cycle by adenine and pyridine nucleotides. Biokhimiya 42, 1030–1044 (1977)
Djafarov, R.H.: Theoretic study of TCA inhibition by excess of substrates. PhD thesis, The Institute of Biological Physics, Puschino (1988)
Kohn, M.C., Achs, M.J., Garfinkel, D.: Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle. Am. J. Physiol. 273(3), R159–R166 (1979)
Cortassa, S., Aon, M.A., Marban, E., Winslow, R.L., O’Rourke, B.: An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys. J. 84, 2734–2755 (2003)
Demin, O.V., Goryanin, I.I., Kholodenko, B.N., Vesterhoff, H.V.: Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria. Mol. Biol. 35, 1095–1104 (2001)
Kondrashova, M.N.: Structuro-kinetic organization of the tricarboxylic acid cycle in the active functioning of mitochondria. Biofizika 34, 450–458 (1989)
Parlo, R.A., Coleman, P.S.: Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. J. Biol. Chem. 259(16), 9997–10003 (1984)
Teller, J.K., Fahien, L.A., Valdivia, E.: Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver. J. Biol. Chem. 265(32), 19486–19494 (1990)
Robinson, J.B., Inman, J.L., Sumegi, B., Srere, P.A.: Further characterization of the Krebs tricarboxylic acid cycle metabolon. J. Biol. Chem. 262(4), 1786–1790 (1987)
Fahien, L.A., Kmiotek, E.H., MacDonald, M.J., Fibich, B., Mandic, M.: Regulation of malate dehydrogenase activity by glutamate, citrate, α-ketoglutarate, and multienzyme interaction. J. Biol. Chem. 263(22), 10687–10697 (1988)
Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics. Portland, London (1995)
Goryanin, I., Hodgman, T.C., Selkov, E.: Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15, 749–758 (1999)
Hooke, R., Jeeves, T.A.: “Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8, 212–229 (1961)
La Noue, K.F., Duszynski, J., Watts, J.A., McKee, E.: Kinetic properties of aspartate transport in rat heart mitochondrial inner membranes. Arch. Biochem. Biophys. 195, 578–590 (1979)
Hansford, R.G., Johnson, R.N.: The steady-state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. J. Biol. Chem. 250, 8361–8375 (1975)
Hoek, J.B.: GDH and the oxidoreduction state of nicotinamide nucleotides in rat-liver mitochondria. PhD thesis (1971)
Forman, W.B., Davidson, E.D., Webster, L.T.: Enzymatic conversion of salicylate to salicylurate. Mol. Pharmacol. 7, 247–259 (1971)
Skulachev, V.P.: Energetics of biological membranes. Nauka, Moscow (1989)
Kasum, C.M., Blair, C.K., Folsom, A.R., Ross, J.A.: Non-steroidal anti-inflammatory drug use and risk of adult leukemia. Cancer Epidemiol. Biomark. Prev. 12, 534–537 (2003)
O’Connor, N., Dargan, P.I., Jones, A.L.: Hepatocellular damage from non-steroidal anti-inflammatory drugs. Q. J. Med. 96, 787–791 (2003)
Li, X.A., Fang, D.C., Si, P.R., Zhang, R.G., Yang, L.Q.: Cooperative anti-tumor effect of aspirin and TNF-related apoptosis-inducing ligand. Zhonghua Ganzangbing Zazhi 11, 676–679 (2003)
Siess, E.A., Kientsch-Engel, R.I., Wieland, O.H.: Concentration of free oxaloacetate in the mitochondrial compartment of isolated liver cells. Biochem. J. 218, 171–176 (1984)
Garber, A.J., Hanson, R.W.: The interrelationships of the various pathways forming gluconeogenic precursors in guinea pig liver mitochondria. J. Biol. Chem. 246, 589–598 (1971)
Williamson, D.H., Lund, P., Krebs, H.A.: The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967)
Vinogradov, A.D.: Succinate-ubiquinone reductase of the respiratory chain. Biokhimiya 51, 1944–1973 (1986)
McCormack, J.G., Denton, R.M.: The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem. J. 180, 533–544 (1979)
Panov, A.V., Scaduto, R.C. Jr.: Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Arch. Biochem. Biophys. 316, 815–820 (1995)
Wilson, D.F., Nelson, D., Erecinska, M.: Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation. FEBS Lett. 143, 228–232 (1982)
Fahien, L.A., Teller, J.K.: Glutamate–malate metabolism in liver mitochondria. A model constructed on the basis of mitochondrial levels of enzymes, specificity, dissociation constants, and stoichiometry of hetero-enzyme complexes. J. Biol. Chem. 267, 10411–10422 (1992)
Massey, V.: The composition of the α-ketoglutarate dehydrogenase complex. Biochim. Biophys. Acta 38, 447–460 (1960)
Smith, C.M., Bryla, J., Williamson, J.R.: Regulation of mitochondrial α-ketoglutarate metabolism by product inhibition of α-ketoglutarate dehydrogenase. J. Biol. Chem. 249, 1497–1505 (1974)
Hamada, M., Koike, K., Nakaula, Y., Hiraoka, T., Koike, M., Hashimoto, T.: A kinetic study of the α-keto acid dehydrogenase complexes from pig heart mitochondria. J. Biochem. 77, 1047–1056 (1975)
Dierks, T., Kramer, R.: Asymmetric orientation of the reconstituted aspartate/glutamate carrier from mitochondria. Biochim. Biophys. Acta 937, 112–126 (1988)
Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137 (1963)
Boork, J., Wennerstrom, H.: The influence of membrane potentials on reaction rates. Control in free-energy-transducing systems. Biochim. Biophys. Acta. 767, 314–320 (1984)
Reynolds, J.A., Johnson, E.A., Tanford, C.: Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps. Proc. Natl. Acad. Sci. USA 82, 6869–6873 (1985)
Cascante, M., Cortes, A.: Kinetic studies of chicken and turkey liver mitochondrial aspartate aminotransferase. Biochem. J. 250, 805–812 (1988)
Kuramitsu, S., Inoue, K., Kondo, K., Aki, K., Kagamiyama, H.: Aspartate aminotransferase isozymes from rabbit liver. Purification and properties. J. Biochem. 97, 1337–1345 (1985)
Cha, S., Parks, R.E.: Succinic thiokinase. II. Kinetic studies: Initial velocity, product inhibition, and effect of arsenate. J. Biol. Chem. 239, 1968–1977 (1964)
Cha, S., Parks, R.E.: Succinic thiokinase. I. Purification of the enzyme from pig heart. J. Biol. Chem. 239, 1961–1967 (1964)
Kaufman, S., Alivisatos, S.G.A.: Purification and properties of the phosphorilating enzyme from spinach. J. Biol. Chem. 216, 141–152 (1955)
Demin, O.V, Goryanin, I.I., Dronov, S., Lebedeva, G.V.: Kinetic model of imidazole glycerol phosphate synthetase of Escherichia coli. Biokhimiya 69, 1625–1638 (2004)
Kotlyar, A.B., Vinogradov, A.D.: Dissociation constants of the succinate dehydrogenase complexes with succinate, fumarate and malonate. Biokhimiya 49, 511–518 (1984)
Grivennikova, V.G., Gavrikova, E.V., Timoshin, A.A., Vinogradov, A.D.: Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. Biochim. Biophys. Acta. 1140, 282–292 (1993)
Alberty, R.A.: Fumarase. The Enzymes 5(B), 531–544 (1961)
Greenhut, J., Umezawa, H., Rudolph, F.B.: Inhibition of fumarase by S-2,3-dicarboxyaziridine. J. Biol. Chem. 260, 6684–6686 (1985)
Heyde, E., Ainsworth, S.: Kinetic studies on the mechanism of the malate dehydrogenase reaction. J. Biol. Chem. 243, 2413–2423 (1968)
Indiveri, C., Dierks, T., Kramer, R., Palmieri, F.: Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. Eur. J. Biochem. 198, 339–347 (1991)
Ricks, C.A., Cook, R.M.: Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver. J. Dairy Sci. 64, 2324–2335 (1981)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4