A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10867-006-9015-y below:

Kinetic Model of Mitochondrial Krebs Cycle: Unraveling the Mechanism of Salicylate Hepatotoxic Effects

References
  1. Bjorkman, D.: Nonsteroidal anti-inflammatory drug-associated toxicity of the liver, lower gastrointestinal tract, and esophagus. Am. J. Med. 105(5A), 17S–21S (1998)

    Article  Google Scholar 

  2. Demin, O.V., Lebedeva, G.V., Kolupaev, A.G., Zobova, E.A., Plyusnina, T.Yu., Lavrova, A.I., Dubinsky, A., Goryacheva, E.A., Tobin, F., Goryanin, I.I.: Kinetic modelling as a modern technology to explore and modify living cells. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology, pp. 59–103. Natural Computing Series, Springer-Verlag (2004)

  3. Fromenty, B., Pessayre, D.: Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther. 67, 101–154 (1995)

    Article  Google Scholar 

  4. Vessey, D.A., Hu, J., Kelly, M.: Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria. J. Biochem. Toxicol. 11, 73–78 (1996)

    Article  Google Scholar 

  5. Kaplan, E.H., Kennedy, J., Davis, J.: Effects of salicylate and other benzoates on oxidative enzymes of the tricarboxylic acid cycle in rat tissue homogenates. Archives of Biochemistry 51, 47–61 (1954)

    Article  Google Scholar 

  6. Miyahara, J.T., Karler, R.: Effect of salicylate on oxidative phosphorylation and respiration of mitochondrial fragments. Biochem. J. 97, 194–198 (1965)

    Google Scholar 

  7. Haas, R., Parker, W.D., Stumpf, D. Jr., Erugen, L.A.: Salicylate-induced loose coupling: protonmotive force measurements. Biochem. Pharmacol. 34, 900–902 (1985)

    Article  Google Scholar 

  8. Bohnensack, R., Sel’kov, E.E.: Stoichiometric regulation in the citric acid cycle. I. Linear interactions of intermediates. Stud. Biophys. B.65, 161–173 (1977a)

    Google Scholar 

  9. Bohnensack, R., Sel’kov, E.E.: Stoichiometric regulation in the citric acid cycle. II. Non-linear interactions. Stud. Biophys. B.66, 47–63 (1977b)

    Google Scholar 

  10. Dynnik, V.V., Temnov, A.V.: A mathematical model of the pyruvate oxidation in liver mitochondria. 1. Regulation of the Krebs cycle by adenine and pyridine nucleotides. Biokhimiya 42, 1030–1044 (1977)

    Google Scholar 

  11. Djafarov, R.H.: Theoretic study of TCA inhibition by excess of substrates. PhD thesis, The Institute of Biological Physics, Puschino (1988)

  12. Kohn, M.C., Achs, M.J., Garfinkel, D.: Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle. Am. J. Physiol. 273(3), R159–R166 (1979)

    Google Scholar 

  13. Cortassa, S., Aon, M.A., Marban, E., Winslow, R.L., O’Rourke, B.: An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys. J. 84, 2734–2755 (2003)

    Article  Google Scholar 

  14. Demin, O.V., Goryanin, I.I., Kholodenko, B.N., Vesterhoff, H.V.: Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria. Mol. Biol. 35, 1095–1104 (2001)

    Article  Google Scholar 

  15. Kondrashova, M.N.: Structuro-kinetic organization of the tricarboxylic acid cycle in the active functioning of mitochondria. Biofizika 34, 450–458 (1989)

    Google Scholar 

  16. Parlo, R.A., Coleman, P.S.: Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. J. Biol. Chem. 259(16), 9997–10003 (1984)

    Google Scholar 

  17. Teller, J.K., Fahien, L.A., Valdivia, E.: Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver. J. Biol. Chem. 265(32), 19486–19494 (1990)

    Google Scholar 

  18. Robinson, J.B., Inman, J.L., Sumegi, B., Srere, P.A.: Further characterization of the Krebs tricarboxylic acid cycle metabolon. J. Biol. Chem. 262(4), 1786–1790 (1987)

    Google Scholar 

  19. Fahien, L.A., Kmiotek, E.H., MacDonald, M.J., Fibich, B., Mandic, M.: Regulation of malate dehydrogenase activity by glutamate, citrate, α-ketoglutarate, and multienzyme interaction. J. Biol. Chem. 263(22), 10687–10697 (1988)

    Google Scholar 

  20. Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics. Portland, London (1995)

    Google Scholar 

  21. Goryanin, I., Hodgman, T.C., Selkov, E.: Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15, 749–758 (1999)

    Article  Google Scholar 

  22. Hooke, R., Jeeves, T.A.: “Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8, 212–229 (1961)

    MATH  Google Scholar 

  23. La Noue, K.F., Duszynski, J., Watts, J.A., McKee, E.: Kinetic properties of aspartate transport in rat heart mitochondrial inner membranes. Arch. Biochem. Biophys. 195, 578–590 (1979)

    Article  Google Scholar 

  24. Hansford, R.G., Johnson, R.N.: The steady-state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. J. Biol. Chem. 250, 8361–8375 (1975)

    Google Scholar 

  25. Hoek, J.B.: GDH and the oxidoreduction state of nicotinamide nucleotides in rat-liver mitochondria. PhD thesis (1971)

  26. Forman, W.B., Davidson, E.D., Webster, L.T.: Enzymatic conversion of salicylate to salicylurate. Mol. Pharmacol. 7, 247–259 (1971)

    Google Scholar 

  27. Skulachev, V.P.: Energetics of biological membranes. Nauka, Moscow (1989)

  28. Kasum, C.M., Blair, C.K., Folsom, A.R., Ross, J.A.: Non-steroidal anti-inflammatory drug use and risk of adult leukemia. Cancer Epidemiol. Biomark. Prev. 12, 534–537 (2003)

    Google Scholar 

  29. O’Connor, N., Dargan, P.I., Jones, A.L.: Hepatocellular damage from non-steroidal anti-inflammatory drugs. Q. J. Med. 96, 787–791 (2003)

    Google Scholar 

  30. Li, X.A., Fang, D.C., Si, P.R., Zhang, R.G., Yang, L.Q.: Cooperative anti-tumor effect of aspirin and TNF-related apoptosis-inducing ligand. Zhonghua Ganzangbing Zazhi 11, 676–679 (2003)

    Google Scholar 

  31. Siess, E.A., Kientsch-Engel, R.I., Wieland, O.H.: Concentration of free oxaloacetate in the mitochondrial compartment of isolated liver cells. Biochem. J. 218, 171–176 (1984)

    Google Scholar 

  32. Garber, A.J., Hanson, R.W.: The interrelationships of the various pathways forming gluconeogenic precursors in guinea pig liver mitochondria. J. Biol. Chem. 246, 589–598 (1971)

    Google Scholar 

  33. Williamson, D.H., Lund, P., Krebs, H.A.: The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967)

    Google Scholar 

  34. Vinogradov, A.D.: Succinate-ubiquinone reductase of the respiratory chain. Biokhimiya 51, 1944–1973 (1986)

    Google Scholar 

  35. McCormack, J.G., Denton, R.M.: The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem. J. 180, 533–544 (1979)

    Google Scholar 

  36. Panov, A.V., Scaduto, R.C. Jr.: Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Arch. Biochem. Biophys. 316, 815–820 (1995)

    Article  Google Scholar 

  37. Wilson, D.F., Nelson, D., Erecinska, M.: Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation. FEBS Lett. 143, 228–232 (1982)

    Article  Google Scholar 

  38. Fahien, L.A., Teller, J.K.: Glutamate–malate metabolism in liver mitochondria. A model constructed on the basis of mitochondrial levels of enzymes, specificity, dissociation constants, and stoichiometry of hetero-enzyme complexes. J. Biol. Chem. 267, 10411–10422 (1992)

    Google Scholar 

  39. Massey, V.: The composition of the α-ketoglutarate dehydrogenase complex. Biochim. Biophys. Acta 38, 447–460 (1960)

    Article  Google Scholar 

  40. Smith, C.M., Bryla, J., Williamson, J.R.: Regulation of mitochondrial α-ketoglutarate metabolism by product inhibition of α-ketoglutarate dehydrogenase. J. Biol. Chem. 249, 1497–1505 (1974)

    Google Scholar 

  41. Hamada, M., Koike, K., Nakaula, Y., Hiraoka, T., Koike, M., Hashimoto, T.: A kinetic study of the α-keto acid dehydrogenase complexes from pig heart mitochondria. J. Biochem. 77, 1047–1056 (1975)

    Google Scholar 

  42. Dierks, T., Kramer, R.: Asymmetric orientation of the reconstituted aspartate/glutamate carrier from mitochondria. Biochim. Biophys. Acta 937, 112–126 (1988)

    Article  Google Scholar 

  43. Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137 (1963)

    Article  Google Scholar 

  44. Boork, J., Wennerstrom, H.: The influence of membrane potentials on reaction rates. Control in free-energy-transducing systems. Biochim. Biophys. Acta. 767, 314–320 (1984)

    Article  Google Scholar 

  45. Reynolds, J.A., Johnson, E.A., Tanford, C.: Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps. Proc. Natl. Acad. Sci. USA 82, 6869–6873 (1985)

    Article  ADS  Google Scholar 

  46. Cascante, M., Cortes, A.: Kinetic studies of chicken and turkey liver mitochondrial aspartate aminotransferase. Biochem. J. 250, 805–812 (1988)

    Google Scholar 

  47. Kuramitsu, S., Inoue, K., Kondo, K., Aki, K., Kagamiyama, H.: Aspartate aminotransferase isozymes from rabbit liver. Purification and properties. J. Biochem. 97, 1337–1345 (1985)

    Google Scholar 

  48. Cha, S., Parks, R.E.: Succinic thiokinase. II. Kinetic studies: Initial velocity, product inhibition, and effect of arsenate. J. Biol. Chem. 239, 1968–1977 (1964)

    Google Scholar 

  49. Cha, S., Parks, R.E.: Succinic thiokinase. I. Purification of the enzyme from pig heart. J. Biol. Chem. 239, 1961–1967 (1964)

    Google Scholar 

  50. Kaufman, S., Alivisatos, S.G.A.: Purification and properties of the phosphorilating enzyme from spinach. J. Biol. Chem. 216, 141–152 (1955)

    Google Scholar 

  51. Demin, O.V, Goryanin, I.I., Dronov, S., Lebedeva, G.V.: Kinetic model of imidazole glycerol phosphate synthetase of Escherichia coli. Biokhimiya 69, 1625–1638 (2004)

    Google Scholar 

  52. Kotlyar, A.B., Vinogradov, A.D.: Dissociation constants of the succinate dehydrogenase complexes with succinate, fumarate and malonate. Biokhimiya 49, 511–518 (1984)

    Google Scholar 

  53. Grivennikova, V.G., Gavrikova, E.V., Timoshin, A.A., Vinogradov, A.D.: Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. Biochim. Biophys. Acta. 1140, 282–292 (1993)

    Article  Google Scholar 

  54. Alberty, R.A.: Fumarase. The Enzymes 5(B), 531–544 (1961)

    Google Scholar 

  55. Greenhut, J., Umezawa, H., Rudolph, F.B.: Inhibition of fumarase by S-2,3-dicarboxyaziridine. J. Biol. Chem. 260, 6684–6686 (1985)

    Google Scholar 

  56. Heyde, E., Ainsworth, S.: Kinetic studies on the mechanism of the malate dehydrogenase reaction. J. Biol. Chem. 243, 2413–2423 (1968)

    Google Scholar 

  57. Indiveri, C., Dierks, T., Kramer, R., Palmieri, F.: Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. Eur. J. Biochem. 198, 339–347 (1991)

    Article  Google Scholar 

  58. Ricks, C.A., Cook, R.M.: Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver. J. Dairy Sci. 64, 2324–2335 (1981)

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4