A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10714-020-02764-1 below:

Compact binary coalescences: constraints on waveforms

References
  1. Boyle, M., et al.: The SXS Collaboration catalog of binary black hole simulations. Class. Quantm Gravity 36, 195006 (2019). https://doi.org/10.1088/1361-6382/ab34e2

    Article  ADS  Google Scholar 

  2. Ajith, P., Hannam, M., Husa, S., Chen, Y., Brügmann, B., Dorband, N., Müller, D., Ohme, F., Pollney, D., Reisswig, C., Santamaría, L., Seiler, J.: Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Phys. Rev. Lett. 106, 241101 (2011). https://doi.org/10.1103/PhysRevLett.106.241101

    Article  ADS  Google Scholar 

  3. Santamaría, L., Ohme, F., Ajith, P., Brügmann, B., Dorband, N., Hannam, M., Husa, S., Mösta, P., Pollney, D., Reisswig, C., Robinson, E.L., Seiler, J., Krishnan, B.: Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for nonprecessing black hole binaries. Phys. Rev. D 82, 064016 (2010). https://doi.org/10.1103/PhysRevD.82.064016

    Article  ADS  Google Scholar 

  4. Husa, S., Khan, S., Hannam, M., Pürrer, M., Ohme, F., Jiménez Forteza, X., Bohé, A.: Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Phys. Rev. D 93, 044006 (2016). https://doi.org/10.1103/PhysRevD.93.044006

    Article  ADS  Google Scholar 

  5. Khan, S., Husa, S., Hannam, M., Ohme, F., Pürrer, M., Jiménez Forteza, X., Bohé, A.: Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D 93, 044007 (2016). https://doi.org/10.1103/PhysRevD.93.044007

    Article  ADS  Google Scholar 

  6. Hannam, M., Schmidt, P., Bohé, A., Haegel, L., Husa, S., Ohme, F., Pratten, G., Pürrer, M.: Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014). https://doi.org/10.1103/PhysRevLett.113.151101

    Article  ADS  Google Scholar 

  7. Damour, T., Nagar, A.: In: Haardt, F., Gorini, V., Moschella, U., Treves, A., Colpi, M. (eds.)Astrophysical Black Holes, Lecture Notes in Physics, vol. 905, pp. 273–312. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-19416-5_7

  8. Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T., Kidder, L.E.: Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-spinning, equal-mass black holes. Phys. Rev. D 79, 124028 (2009). https://doi.org/10.1103/PhysRevD.79.124028

    Article  ADS  Google Scholar 

  9. Taracchini, A., Buonanno, A., Pan, Y., Hinderer, T., Boyle, M., Hemberger, D.A., Kidder, L.E., Lovelace, G., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Szilágyi, B., Taylor, N.W., Zenginoglu, A.: Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys. Rev. D 89, 061502 (2014). https://doi.org/10.1103/PhysRevD.89.061502

    Article  ADS  Google Scholar 

  10. Bohé, A., et al.: Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D 95, 044028 (2017). https://doi.org/10.1103/PhysRevD.95.044028

    Article  ADS  MathSciNet  Google Scholar 

  11. Pan, Y., Buonanno, A., Taracchini, A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Szilágyi, B.: Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D 89, 084006 (2014). https://doi.org/10.1103/PhysRevD.89.084006

    Article  ADS  Google Scholar 

  12. Nagar, A., Messina, F., Rettegno, P., Bini, D., Damour, T., Geralico, A., Akcay, S., Bernuzzi, S.: Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries. Phys. Rev. D 99, 044007 (2019). https://doi.org/10.1103/PhysRevD.99.044007

    Article  ADS  MathSciNet  Google Scholar 

  13. Nagar, A., Bernuzzi, S., Del Pozzo, W., Riemenschneider, G., Akcay, S., Carullo, G., Fleig, P., Babak, S., Tsang, K.W., Colleoni, M., et al.: Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Phys. Rev. D 98, 104052 (2018)

    Article  ADS  Google Scholar 

  14. Field, S.E., Galley, C.R., Hesthaven, J.S., Kaye, J., Tiglio, M.: Fast prediction and evaluation of gravitational waveforms using surrogate models. Phys. Rev. X 4, 031006 (2014). https://doi.org/10.1103/PhysRevX.4.031006

    Article  Google Scholar 

  15. Varma, V., Field, S.E., Scheel, M.A., Blackman, J., Kidder, L.E., Pfeiffer, H.P.: Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. D 99, 064045 (2019). https://doi.org/10.1103/PhysRevD.99.064045

    Article  ADS  MathSciNet  Google Scholar 

  16. Rifat, N.E.M., Field, S.E., Khanna, G., Varma, V.: Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries. Phys. Rev. D 101, 081502 (2020). https://doi.org/10.1103/PhysRevD.101.081502

    Article  ADS  MathSciNet  Google Scholar 

  17. Lackey, B.D., Pürrer, M., Taracchini, A., Marsat, S.: Surrogate model for an aligned-spin effective one body waveform model of binary neutron star inspirals using Gaussian process regression. Phys. Rev. D 100, 024002 (2019). https://doi.org/10.1103/PhysRevD.100.024002

    Article  ADS  Google Scholar 

  18. Kumar, P., Chu, T., Fong, H., Pfeiffer, H.P., Boyle, M., Hemberger, D.A., Kidder, L.E., Scheel, M.A., Szilagyi, B.: Accuracy of binary black hole waveform models for aligned-spin binaries. Phys. Rev. D 93, 104050 (2016). https://doi.org/10.1103/PhysRevD.93.104050

    Article  ADS  Google Scholar 

  19. Pürrer, M., Haster, C.J.: Gravitational waveform accuracy requirements for future ground-based detectors. Phys. Rev. Res. 2, 023151 (2020). https://doi.org/10.1103/PhysRevResearch.2.023151

    Article  Google Scholar 

  20. Aasi, J., et al.: Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001

    Article  ADS  Google Scholar 

  21. Acernese, F., et al.: Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015). https://doi.org/10.1088/0264-9381/32/2/024001

    Article  ADS  Google Scholar 

  22. Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D., Yamamoto, H.: Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 88, 043007 (2013). https://doi.org/10.1103/PhysRevD.88.043007

    Article  ADS  Google Scholar 

  23. Unnikrishnan, C.S.: IndIGO and LIGO-India: Scope and plans for gravitational wave research and precision metrology in India. Int. J. Mod. Phys. D 22, 1341010 (2013). https://doi.org/10.1142/S0218271813410101

    Article  ADS  Google Scholar 

  24. Punturo, M., et al.: The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Gravity 27, 194002 (2010). https://doi.org/10.1088/0264-9381/27/19/194002

    Article  ADS  Google Scholar 

  25. Reitze, D., et al.: Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 035 (2019)

    Google Scholar 

  26. Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna, arXiv e-prints (2017)

  27. Luo, J., et al.: TianQin: a space-borne gravitational wave detector. Class. Quantum Gravity 33, 035010 (2016). https://doi.org/10.1088/0264-9381/33/3/035010

    Article  ADS  Google Scholar 

  28. Kawamura, S., et al.: The Japanese space gravitational wave antenna DECIGO. Class. Quantum Gravity 23, S125 (2006). https://doi.org/10.1088/0264-9381/23/8/S17

    Article  Google Scholar 

  29. Buonanno, A.: New approaches to GW source modeling: Overview (2019). https://www.icts.res.in/discussion-meeting/fgwa19/talks. Talk at the discussion meeting on The Future of Gravitational Wave Astronomy, held at ICTS, Bangalore (August 19–22 2019)

  30. Yunes, N., Pretorius, F.: Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-einsteinian framework. Phys. Rev. D 80, 122003 (2009). https://doi.org/10.1103/PhysRevD.80.122003

    Article  ADS  Google Scholar 

  31. London, L., Khan, S., Fauchon-Jones, E., García, C., Hannam, M., Husa, S., Jiménez-Forteza, X., Kalaghatgi, C., Ohme, F., Pannarale, F.: First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries. Phys. Rev. Lett. 120, 161102 (2018). https://doi.org/10.1103/PhysRevLett.120.161102

    Article  ADS  Google Scholar 

  32. Cotesta, R., Buonanno, A., Bohé, A., Taracchini, A., Hinder, I., Ossokine, S.: Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics. Phys. Rev. D 98, 084028 (2018). https://doi.org/10.1103/PhysRevD.98.084028

    Article  ADS  Google Scholar 

  33. Khan, S., Ohme, F., Chatziioannou, K., Hannam, M.: Including higher order multipoles in gravitational-wave models for precessing binary black holes. Phys. Rev. D 101, 024056 (2020). https://doi.org/10.1103/PhysRevD.101.024056

    Article  ADS  MathSciNet  Google Scholar 

  34. Khan, S., Chatziioannou, K., Hannam, M., Ohme, F.: Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Phys. Rev. D 100, 024059 (2019). https://doi.org/10.1103/PhysRevD.100.024059

    Article  ADS  MathSciNet  Google Scholar 

  35. Blackman, J., Field, S.E., Scheel, M.A., Galley, C.R., Hemberger, D.A., Schmidt, P., Smith, R.: A surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers. Phys. Rev. D 95, 104023 (2017). https://doi.org/10.1103/PhysRevD.95.104023

    Article  ADS  MathSciNet  Google Scholar 

  36. Apostolatos, T.A., Cutler, C., Sussman, G.J., Thorne, K.S.: Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries. Phys. Rev. D 49, 6274 (1994). https://doi.org/10.1103/PhysRevD.49.6274

    Article  ADS  Google Scholar 

  37. Varma, V., Field, S.E., Scheel, M.A., Blackman, J., Gerosa, D., Stein, L.C., Kidder, L.E., Pfeiffer, H.P.: Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015 (2019). https://doi.org/10.1103/PhysRevResearch.1.033015

    Article  Google Scholar 

  38. Kidder, L.E., et al.: SpECTRE: a task-based discontinuous Galerkin code for relativistic astrophysics. J. Comput. Phys. 335, 84 (2017). https://doi.org/10.1016/j.jcp.2016.12.059

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Pan, Y., Buonanno, A., Baker, J.G., Centrella, J., Kelly, B.J., McWilliams, S.T., Pretorius, F., van Meter, J.R.: A Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case. Phys. Rev. D 77, 024014 (2008). https://doi.org/10.1103/PhysRevD.77.024014

    Article  ADS  Google Scholar 

  40. Lindblom, L., Owen, B.J., Brown, D.A.: Model waveform accuracy standards for gravitational wave data analysis. Phys. Rev. D 78, 124020 (2008). https://doi.org/10.1103/PhysRevD.78.124020

    Article  ADS  Google Scholar 

  41. MacDonald, I., Mroue, A.H., Pfeiffer, H.P., Boyle, M., Kidder, L.E., Scheel, M.A., Szilagyi, B., Taylor, N.W.: Suitability of hybrid gravitational waveforms for unequal-mass binaries. Phys. Rev. D 87, 024009 (2013). https://doi.org/10.1103/PhysRevD.87.024009

    Article  ADS  Google Scholar 

  42. Kumar, P., Barkett, K., Bhagwat, S., Afshari, N., Brown, D.A., Lovelace, G., Scheel, M.A., Szilágyi, B.: Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: comparison with matter-free numerical relativity in the low-frequency regime. Phys. Rev. D 92, 102001 (2015). https://doi.org/10.1103/PhysRevD.92.102001

    Article  ADS  Google Scholar 

  43. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity. VII. Waves from axisymmetric isolated systems. Proc. R. Soc. Lond. Ser. A 269, 21 (1962). https://doi.org/10.1098/rspa.1962.0161

    Article  ADS  MATH  Google Scholar 

  44. Sachs, R.K., Bondi, H.: Gravitational waves in general relativity. VIII. Waves in asymptotically flat space-time. Proc. R. Soc. Lond. Ser. A 270, 103 (1962). https://doi.org/10.1098/rspa.1962.0206

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Infeld, I. (ed.): Relativistic Theories of Gravitation. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  46. Khera, N., Krishnan, B., Ashtekar, A., De Lorenzo, T.: Inferring the gravitational wave memory for binary coalescence events, arXiv e-prints (2020)

  47. Mitman, K., Iozzo, D., Khera, N., Boyle, M., De Lorenzo, T., Kidder, L., Moxon, J., Pfeiffer, H., Scheel, M.A., Teukolsky, S.A.: Adding Gravitational Memory to the SXS Catalog using BMS Balance Laws. (2020) arXiv:2011.01309v1

  48. Ashtekar, A., De Lorenzo, T., Khera, N.: Compact binary coalescences: the subtle issue of angular momentum. Phys. Rev. D 101, 044005 (2020). https://doi.org/10.1103/PhysRevD.101.044005

    Article  ADS  MathSciNet  Google Scholar 

  49. Ashtekar, A., Khera, N., Krishnan, B.: Using balance laws to infer the spin of the final black hole for binary coalescence events (2020) (in preparation)

  50. Geroch, R.: In: Esposito, F.P., Witten, L. (eds.) Asymptotic Structure of Space-Time, pp. 1–105. Springer US, Boston (1977). https://doi.org/10.1007/978-1-4684-2343-3_1

  51. Ashtekar, A., Streubel, M.: Symplectic geometry of radiative modes and conserved quantities at null infinity. Proc. R. Soc. Lond. Ser. A 376, 585 (1981). https://doi.org/10.1098/rspa.1981.0109

    Article  ADS  MathSciNet  Google Scholar 

  52. Ashtekar, A.: In: Bieri, L., Yau, S.T. (eds.) Surveys in Differential Geometry 2015: 100 Years of General Relativity. A Jubilee Volume on General Relativity and Mathematics, pp. 99–122. International Press, Boston (2015). https://doi.org/10.4310/SDG.2015.v20.n1.a5

  53. Penrose, R.: Zero rest mass fields including gravitation: asymptotic behavior. Proc. R. Soc. Lond. Ser. A 284, 159 (1965). https://doi.org/10.1098/rspa.1965.0058

    Article  ADS  MATH  Google Scholar 

  54. Bohé, A., Shao, L., Taracchini, A., Buonanno, A., Babak, S., Harry, I.W., Hinder, I., Ossokine, S., Pürrer, M., Raymond, V., et al.: Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D 95, 044028 (2017)

    Article  ADS  Google Scholar 

  55. Ashtekar, A.: Radiative degrees of freedom of the gravitational field in exact general relativity. J. Math. Phys. 22, 2885 (1981). https://doi.org/10.1063/1.525169

    Article  ADS  MathSciNet  Google Scholar 

  56. Newman, E.T., Penrose, R.: New conservation laws for zero rest-mass fields in asymptotically flat space-time. Proc. R. Soc. Lond. Ser. A 305, 175 (1968). https://doi.org/10.1098/rspa.1968.0112

    Article  ADS  Google Scholar 

  57. Dray, T.: Momentum flux at null infinity. Class. Quantum Gravity 2, L7 (1985). https://doi.org/10.1088/0264-9381/2/1/002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Kesavan, A.: Asymptotic structure of space-time with a positive cosmological constant. Ph.D. thesis, Penn State U. (2016-06-02). https://etda.libraries.psu.edu/catalog/f4752g72m

  59. Friedrich, H.: Peeling or not peeling–is that the question? Class. Quantum Gravity 35, 083001 (2018). https://doi.org/10.1088/1361-6382/aaafdb

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Blanchet, L., Damour, T.: Radiative gravitational fields in general relativity. I. General structure of the field outside the source. Philos. Trans. R. Soc. Lond. Ser. A 320, 379 (1986). https://doi.org/10.1098/rsta.1986.0125

  61. Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014). https://doi.org/10.12942/lrr-2014-2

    Article  ADS  MATH  Google Scholar 

  62. Ashtekar, A.: Asymptotic Quantization: Based on 1984 Naples Lectures, Monographs and Textbooks in Physical Science, vol. 2. Bibliopolis, Naples (1987)

    MATH  Google Scholar 

  63. Sachs, R.K.: Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851 (1962). https://doi.org/10.1103/PhysRev.128.2851

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Newman, E.T., Penrose, R.: Note on the Bondi–Metzner–Sachs group. J. Math. Phys. 7, 863 (1966). https://doi.org/10.1063/1.1931221

    Article  ADS  MathSciNet  Google Scholar 

  65. Ashtekar, A., Magnon-Ashtekar, A.: On the symplectic structure of general relativity. Commun. Math. Phys. 86, 55 (1982). https://doi.org/10.1007/BF01205661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Winicour, J.: Some total invariants of asymptotically flat space-times. J. Math. Phys. 9, 861 (1968). https://doi.org/10.1063/1.1664652

    Article  ADS  MATH  Google Scholar 

  67. Bramson, B.D., Penrose, R.: Relativistic angular momentum for asymptotically flat Einstein–Maxwell manifolds. Proc. R. Soc. Lond. Ser. A 341, 463 (1975). https://doi.org/10.1098/rspa.1975.0004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Prior, C.R., Hawking, S.W.: Angular momentum in general relativity. I. Definition and asymptotic behaviour. Proc. R. Soc. Lond. Ser. A 354, 379 (1977). https://doi.org/10.1098/rspa.1977.0073

    Article  ADS  MathSciNet  Google Scholar 

  69. Streubel, M.: “Conserved” quantities for isolated gravitational systems. Gen. Relativ. Gravit. 9, 551 (1978). https://doi.org/10.1007/BF00759549

    Article  ADS  MathSciNet  Google Scholar 

  70. Geroch, R., Winicour, J.: Linkages in general relativity. J. Math. Phys. 22, 803 (1981). https://doi.org/10.1063/1.524987

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Ashtekar, A., Winicour, J.: Linkages and hamiltonians at null infinity. J. Math. Phys. 23, 2410 (1982). https://doi.org/10.1063/1.525283

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Dray, T., Streubel, M.: Angular momentum at null infinity. Class. Quantum Gravity 1, 15 (1984). https://doi.org/10.1088/0264-9381/1/1/005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Streubel, M.: “Conserved” quantities related to asymptotic symmetries for isolated systems in general relativity. Ph.D. thesis, Max Planck Institut für Astrophysik, München MPI PAE/ Astro 165 (1978)

  74. Baker, J.G., Boggs, W.D., Centrella, J., Kelly, B.J., McWilliams, S.T., Miller, M.C., van Meter, J.R.: Modeling kicks from the merger of nonprecessing black hole binaries. Astrophys. J. 668, 1140 (2007). https://doi.org/10.1086/521330

    Article  ADS  Google Scholar 

  75. Campanelli, M., Lousto, C.O., Zlochower, Y., Merritt, D.: Large merger recoils and spin flips from generic black-hole binaries. Astrophys. J. Lett. 659, L5 (2007). https://doi.org/10.1086/516712

    Article  ADS  Google Scholar 

  76. De Lorenzo, T.: Constraints on GW Waveforms (2020). http://meetings.aps.org/Meeting/APR20/Session/T16.7. Talk at Virtual April APS Meeting, Session T16: Approximate Methods in Gravitational Astrophysics

  77. Kidder, B.: Personal communication to AA (2019)

  78. Iozzo, D.: Personal communication to TDL and NK (2019)

  79. Iyer, B.: Personal communication to AA (2019)

  80. Poisson, E.: Personal communication to AA (2019)

  81. Beig, R., Simon, W.: The stationary gravitational field near spatial infinity. Gen. Relativ. Gravit. 12, 1003 (1980). https://doi.org/10.1007/BF00768926

    Article  ADS  MathSciNet  Google Scholar 

  82. Satishchandran, G., Wald, R.M.: Asymptotic behavior of massless fields and the memory effect. Phys. Rev. D 99, 084007 (2019). https://doi.org/10.1103/PhysRevD.99.084007

    Article  ADS  MathSciNet  Google Scholar 

  83. Abbott, B.P., et al.: GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019). https://doi.org/10.1103/PhysRevX.9.031040

    Article  Google Scholar 

  84. Littenberg, T.B., Baker, J.G., Buonanno, A., Kelly, B.J.: Systematic biases in parameter estimation of binary black-hole mergers. Phys. Rev. D 87, 104003 (2013). https://doi.org/10.1103/PhysRevD.87.104003

    Article  ADS  Google Scholar 

  85. Brown, D.A., Kumar, P., Nitz, A.H.: Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors. Phys. Rev. D 87, 082004 (2013). https://doi.org/10.1103/PhysRevD.87.082004

    Article  ADS  Google Scholar 

  86. Capano, C., Pan, Y., Buonanno, A.: Impact of higher harmonics in searching for gravitational waves from nonspinning binary black holes. Phys. Rev. D 89, 102003 (2014). https://doi.org/10.1103/PhysRevD.89.102003

    Article  ADS  Google Scholar 

  87. Varma, V., Ajith, P., Husa, S., Bustillo, J.C., Hannam, M., Pürrer, M.: Gravitational-wave observations of binary black holes: effect of nonquadrupole modes. Phys. Rev. D 90, 124004 (2014). https://doi.org/10.1103/PhysRevD.90.124004

    Article  ADS  Google Scholar 

  88. Babak, S., Taracchini, A., Buonanno, A.: Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity. Phys. Rev. D 95, 024010 (2017)

    Article  ADS  Google Scholar 

  89. Boyle, M.: Transformations of asymptotic gravitational-wave data. Phys. Rev. D 93, 084031 (2016). https://doi.org/10.1103/PhysRevD.93.084031

    Article  ADS  MathSciNet  Google Scholar 

  90. Garfinkle, D.: A simple estimate of gravitational wave memory in binary black hole systems. Class. Quantum Gravity 33, 177001 (2016). https://doi.org/10.1088/0264-9381/33/17/177001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Pollney, D., Reisswig, C.: Gravitational memory in binary black hole mergers. Astrophys. J. 732, L13 (2011). https://doi.org/10.1088/2041-8205/732/1/L13

    Article  ADS  Google Scholar 

  92. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space (PMS-41). Princeton University Press, Princeton (1994). https://doi.org/10.1515/9781400863174

  93. Chrusciel, P.T., Delay, E.: Existence of non-trivial, vacuum, asymptotically simple spacetimes. Class. Quantum Gravity 19, L71 (2002). https://doi.org/10.1088/0264-9381/19/9/101

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4