A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10709-008-9304-4 below:

Analysis and implications of mutational variation

  • Ajie BC, Estes S, Lynch M, Phillips PC (2005) Behavioral degradation under mutation accumulation in Caenorhabditis elegans. Genetics 170:655–660. doi:10.1534/genetics.104.040014

    Article  PubMed  Google Scholar 

  • Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437:1149–1152. doi:10.1038/nature04107

    Article  PubMed  CAS  Google Scholar 

  • Ávila V, Chavarrías D, Sánchez E, Manrique A, López-Fanjul C, García-Dorado A (2006) Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster. Genetics 173:267–277. doi:10.1534/genetics.106.056200

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RB, Keightley PD, Laurén-Määttä C, Vassilieva LL, Lynch M, Leroi AM (2002) Spontaneous mutational variation for body size in Caenorhabditis elegans. Genetics 162:755–765

    PubMed  Google Scholar 

  • Baer CF, Shaw F, Steding C, Baurngartner M, Hawkins A, Houppert A et al (2005) Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes. Proc Natl Acad Sci USA 102:5785–5790. doi:10.1073/pnas.0406056102

    Article  PubMed  CAS  Google Scholar 

  • Bataillon T (2000) Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity 84:497–501. doi:10.1046/j.1365-2540.2000.00727.x

    Article  PubMed  Google Scholar 

  • Bataillon T (2003) Shaking the ‘deleterious mutations’ dogma? Trends Ecol Evol 18:315–317. doi:10.1016/S0169-5347(03)00128-9

    Article  Google Scholar 

  • Bateman AJ (1959) The viability of near-normal irradiated chromosomes. Int J Radiat Biol 1:170–180. doi:10.1080/09553005914550241

    Article  Google Scholar 

  • Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE et al (2008) Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4:e1000083. doi:10.1371/journal.pgen.1000083

    Article  PubMed  CAS  Google Scholar 

  • Bubb KL, Bovee D, Buckley D, Haugen E, Kibukawa M, Paddock M et al (2006) Scan of human genome reveals no new loci under ancient balancing selection. Genetics 173:2165–2177. doi:10.1534/genetics.106.055715

    Article  PubMed  CAS  Google Scholar 

  • Bulmer MG (1989) Maintenance of genetic variability by mutation-selection balance: a child’s guide through the jungle. Genome 31:761–767

    Google Scholar 

  • Burch CL, Guyader S, Samarov D, Shen H (2007) Experimental estimate of the abundance and effects of nearly neutral mutations in the RNA virus ϕ6. Genetics 176:467–476. doi:10.1534/genetics.106.067199

    Article  PubMed  CAS  Google Scholar 

  • Bürger R (2000) The mathematical theory of selection, recombination and mutation. Wiley, Chichester

    Google Scholar 

  • Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23:251–287. doi:10.1146/annurev.ge.23.120189.001343

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340. doi:10.1017/S0016672399004152

    Article  PubMed  CAS  Google Scholar 

  • Clayton G, Robertson A (1955) Mutation and quantitative variation. Am Nat 89:151–158. doi:10.1086/281874

    Article  Google Scholar 

  • Crow JF, Simmons MJ (1983). The mutation load in Drosophila. pp 1–35. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 3C. Academic Press, London

  • Davies EK, Peters AD, Keightley PD (1999) High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science 285:1745–1747. doi:10.1126/science.285.5434.1748

    Article  Google Scholar 

  • Denver DR, Morris K, Lynch M, Thomas WK (2004) High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430:679–682. doi:10.1038/nature02697

    Article  PubMed  CAS  Google Scholar 

  • Denver DR, Feinberg S, Estes S, Thomas WK, Lynch M (2005) Mutation rates, spectra, and hotspots in mismatch repair-deficient Caenorhabditis elegans. Genetics 170:107–113. doi:10.1534/genetics.104.038521

    Article  PubMed  CAS  Google Scholar 

  • Elena SF, Moya A (1999) Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J Evol Biol 12:1078–1088. doi:10.1046/j.1420-9101.1999.00110.x

    Article  Google Scholar 

  • Estes S, Lynch M (2003) Rapid fitness recovery in mutationally degraded lines of Caenorhabditis elegans. Evolution 57:1022–1030

    PubMed  Google Scholar 

  • Estes S, Phillips PC, Denver DR, Thomas KW, Lynch M (2004) Mutation accumulation in populations of varying sizes: the distribution of mutational effects for fitness correlates in Caenorhabditis elegans. Genetics 166:1269–1279. doi:10.1534/genetics.166.3.1269

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610–618. doi:10.1038/nrg2146

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Keightley PD, Smith NGC, Gaffney D (2002) Quantifying the slightly deleterious model of molecular evolution. Mol Biol Evol 19:2142–2149

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Woolfit M, Phlelps T (2006) The distribution of fitness of new deleterious amino acid mutations in humans. Genetics 173:891–900. doi:10.1534/genetics.106.057570

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, London

    Google Scholar 

  • Fernández J, López-Fanjul C (1996) Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics 143:829–837

    PubMed  Google Scholar 

  • Fry JD, Keightley PD, Heinsohn SL, Nuzhdin SV (1999) New estimates of rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc Natl Acad Sci USA 96:574–579. doi:10.1073/pnas.96.2.574

    Article  PubMed  CAS  Google Scholar 

  • García-Dorado A (1997) The rate and effects distribution of viable mutation in Drosophila: minimum distance estimation. Evolution 51:1130–1139. doi:10.2307/2411042

    Article  Google Scholar 

  • García-Dorado A, Marin JM (1998) Minimum distance estimation of mutational parameters for quantitative traits. Biometrics 54:1097–1114. doi:10.2307/2533860

    Article  PubMed  Google Scholar 

  • García-Dorado A, Gallego A (2003) Comparing analysis methods for mutation-accumulation data: A simulation study. Genetics 164:807–819

    PubMed  Google Scholar 

  • García-Dorado A, López-Fanjul C, Caballero A (1999) Properties of spontaneous mutations affecting quantitative traits. Genet Res 74:341–350. doi:10.1017/S0016672399004206

    Article  PubMed  Google Scholar 

  • Gilligan DM, Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (1997) Is mutation accumulation a threat to the survival of endangered populations? Conserv Biol 11:1235–1241. doi:10.1046/j.1523-1739.1997.96215.x

    Article  Google Scholar 

  • Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Charlesworth B et al (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445:82–85. doi:10.1038/nature05388

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884. doi:10.1101/gr.5022906

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Peters AD, Keightley PD (2003) Estimating numbers of EMS-induced mutations affecting life history traits in Caenorhabditis elegans in crosses between inbred sublines. Genet Res 82:191–205. doi:10.1017/S0016672303006499

    Article  PubMed  Google Scholar 

  • Hill WG (1982a) Rates of change in quantitative traits from fixation of new mutations. Proc Natl Acad Sci USA 79:142–145. doi:10.1073/pnas.79.1.142

    Article  PubMed  CAS  Google Scholar 

  • Hill WG (1982b) Predictions of response to artificial selection from new mutations. Genet Res 40:255–278

    PubMed  Google Scholar 

  • Hill WG, Rasbash J (1986) Models of long term artificial selection in finite population with recurrent mutation. Genet Res 48:125–131

    PubMed  CAS  Google Scholar 

  • Houle D, Nuzhdin SV (2004) Mutation accumulation and the effect of copia insertions in Drosophila melanogaster. Genet Res 83:7–18. doi:10.1017/S0016672303006505

    Article  PubMed  CAS  Google Scholar 

  • Houle D, Hoffmaster D, Assimacopolous S, Charlesworth B (1992) The genomic mutation rate for fitness in Drosophila. Nature 359:58–60. doi:10.1038/359058a0

    Article  PubMed  CAS  Google Scholar 

  • Houle D, Morikawa B, Lynch M (1996) Comparing mutational variabilities. Genetics 143:1467–1483

    PubMed  CAS  Google Scholar 

  • Joseph SB, Hall DW (2004) Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 168:1817–1825. doi:10.1534/genetics.104.033761

    Article  PubMed  Google Scholar 

  • Keightley PD (1994) The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138:1315–1322

    PubMed  CAS  Google Scholar 

  • Keightley PD (1998) Inference of genome wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics 150:1283–1293

    PubMed  CAS  Google Scholar 

  • Keightley PD (2004a) Mutational variation and long-term selection response. Plant Breed Rev 24(part 1):227–247

    Google Scholar 

  • Keightley PD (2004b) Comparing analysis methods for mutation-accumulation data. Genetics 167:551–553. doi:10.1534/genetics.167.1.551

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD, Caballero A (1997) Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 94:3823–3827. doi:10.1073/pnas.94.8.3823

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD, Ohnishi O (1998) EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics 148:753–766

    PubMed  CAS  Google Scholar 

  • Keightley PD, Bataillon TA (2000) Multi-generation maximum likelihood analysis applied to mutation accumulation experiments in Caenorhabditis elegans. Genetics 154:1193–1201

    PubMed  CAS  Google Scholar 

  • Keightley PD, Lynch M (2003) Towards a realistic model of mutations affecting fitness. Evolution Int J Org Evolution 57:683–685

    Google Scholar 

  • Keightley PD, Eyre-Walker A (2007) Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177:2251–2261

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983). The neutral theory of molecular evolution. Cambridge University Press, Cambridge

  • Lande R (1994) Risk of population extinction from fixation of new deleterious mutations. Evolution 48:1460–1469. doi:10.2307/2410240

    Article  Google Scholar 

  • Livingston RJ, von Niederhausern A, Jegga AG, Crawford DC, Carlson CS, Rieder MJ et al (2004) Pattern of sequence variation across 213 environmental response genes. Genome Res 14:1821–1831. doi:10.1101/gr.2730004

    Article  PubMed  CAS  Google Scholar 

  • Loewe L, Charlesworth B, Bartolomé C, Nöel V (2006) Estimating selection on non-synonymous mutations. Genetics 172:1079–1092. doi:10.1534/genetics.105.047217

    Article  PubMed  CAS  Google Scholar 

  • López MA, López-Fanjul C (1993) Spontaneous mutation for a quantitative trait in Drosophila melanogaster I. Response to artificial selection. Genet Res 61:107–116

    PubMed  Google Scholar 

  • Lyman RF, Lawrence F, Nuzhdin SV, Mackay TFC (1996) Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143:277–292

    PubMed  CAS  Google Scholar 

  • Lynch M (1988) The rate of polygenic mutation. Genet Res 51:137–148

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Hill WG (1986) Phenotypic evolution by neutral mutation. Evolution 40:915–935. doi:10.2307/2408753

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MA, USA

    Google Scholar 

  • Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518. doi:10.1086/285812

    Article  Google Scholar 

  • Lynch M, Blanchard J, Houle D, Kibota T, Schultz S, Vassilieva L et al (1999) Perspective: spontaneous deleterious mutation. Evolution Int J Org Evolution 53:645–663. doi:10.2307/2640707

    Google Scholar 

  • Mackay TFC (1988) Transposable element-induced quantitative genetic variation in Drosophila. In: Weir BS, Eisen EJ, Goodman MM, Namkoong G (eds) Proceedings of the second international conference on quantitative genetics. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Mukai T (1964) The genetic structure of natural populations of Drosophila melanogaster I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50:1–19

    PubMed  CAS  Google Scholar 

  • Mukai T, Chigusa SI, Mettler LE, Crow JF (1972) Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72:333–355

    Google Scholar 

  • Nielsen R, Yang Z (2003) Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Mol Biol Evol 20:1231–1239. doi:10.1093/molbev/msg147

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi O (1977) Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster II. Homozygous effect of polygenic mutations. Genetics 87:529–545

    PubMed  CAS  Google Scholar 

  • Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252–261. doi:10.1038/nrg761

    Article  PubMed  CAS  Google Scholar 

  • Piganeau GV, Eyre-Walker A (2003) Estimating the distribution of fitness effects from DNA sequence data: implications for the molecular clock. Proc Natl Acad Sci USA 100:10335–10340. doi:10.1073/pnas.1833064100

    Article  PubMed  CAS  Google Scholar 

  • Robertson A (1967) The nature of quantitative genetic variation. In: Brink RB (ed) Heritage from Mendel. University of Wisconsin Press, Madison, Milwaukee and London, pp 265–280

    Google Scholar 

  • Sawyer SA, Kulathinal RJ, Bustamante CD, Hartl DL (2003) Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J Mol Evol 57:S154–S164. doi:10.1007/s00239-003-0022-3

    Article  PubMed  CAS  Google Scholar 

  • Schoen DJ (2005) Deleterious mutation in related species of the plant genus Amsinckia with contrasting mating systems. Evolution 59:2370–2377

    PubMed  Google Scholar 

  • Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA et al (2007) Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci USA 104:2271–2276. doi:10.1073/pnas.0610385104

    Article  PubMed  Google Scholar 

  • Shaw RG, Chang SM (2006) Gene action of new mutations in Arabidopsis thaliana. Genetics 172:1855–1865. doi:10.1534/genetics.105.050971

    Article  PubMed  CAS  Google Scholar 

  • Shaw RG, Byers DL, Darmo E (2000) Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155:369–378

    PubMed  CAS  Google Scholar 

  • Shaw FH, Geyer CJ, Shaw RG (2002) A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution Int J Org Evolution 56:453–463

    Google Scholar 

  • Shaw RG, Shaw FH, Geyer C (2003) What fraction of mutations reduces fitness? A reply to Keightley and Lynch. Evolution 57:686–689

    Google Scholar 

  • Smith NGC, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024. doi:10.1038/4151022a

    Article  PubMed  CAS  Google Scholar 

  • Vassilieva LL, Lynch M (1999) The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics 151:119–129

    PubMed  CAS  Google Scholar 

  • Vassilieva LL, Hook AM, Lynch M (2000) The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution 54:1234–1246

    PubMed  CAS  Google Scholar 

  • Webb CT, Shabalina SA, Ogurtsov AY, Kondrashov AS (2002) Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Res 30:1233–1239. doi:10.1093/nar/30.5.1233

    Article  PubMed  CAS  Google Scholar 

  • Zhang XS, Hill WG (2005) Genetic variability under mutation selection balance. Trends Ecol Evol 20:468–470. doi:10.1016/j.tree.2005.06.010

    Article  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4