A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10534-006-9077-0 below:

Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–554

    PubMed  CAS  Google Scholar 

  • Andrew TL (1990) Regulation of heme biosynthesis in higher animals. In: Dailey HA (ed) Biosynthesis of heme and chlorophylls, Mc Graw-Hill Book Co:163–200

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Wiley Interscience, New York

    Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28:497–504

    CAS  Google Scholar 

  • Balestrasse KB, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase activity and oxidative stress signaling in soybean leaves. Plant Sci 170:339–346

    Article  CAS  Google Scholar 

  • Batlle AMC, Stella AM (1978) Aminolaevulinate dehydratase. Its mechanism of action. Int J Biochem 9:861–864

    Article  PubMed  CAS  Google Scholar 

  • Beale SI, Weinstein JD (1991) Biochemistry and regulation of photosynthetic pigment formation in plants and algae. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles. Elsevier Scientific:155–235

  • Beale SL (1978) Delta aminolevulinic acid in plants: its biosynthesys, regulation and the role in plastid development. Annu Rev Plant Physiol 29:95–101

    Article  CAS  Google Scholar 

  • Becana M, Aparico-Tejo P, Irigoyen J, Sanchez-Diaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171

    PubMed  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Boese QF, Spano AJ, Li J, Timko MP (1991) Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem 266:17060–17066

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Castelfranco PA, Zeng XH (1991) Regulation of 5-aminolevulinic acid synthesis in developing chloroplasts. An endogenous inhibitor from the thylakoid membranes. Plant Physiol 97:1–6

    PubMed  CAS  Google Scholar 

  • Chauhan S, O’Brian SM (1993) Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain. J Bacteriol 175:7222–7227

    PubMed  CAS  Google Scholar 

  • Del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • Ernst W, Nelissen H, Ten Bookum W (2000) Combination toxicology of metal-enriched soils: physiological responses of Zn- and Cd2+-resistant ecotype of Silene vulgaris on polymetallic soils. Environ Exp Bot 43:45–71

    Article  Google Scholar 

  • Faller P, Kiennzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca site. Biochim Biophys Acta 1706:158–164

    Article  PubMed  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  PubMed  CAS  Google Scholar 

  • Gratäo PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metals-stressed plant a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modifications of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J Exp Bot 48:1375–1381

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1957) The water culture method for growing plants without soil, University of California, Berkely, California Agricultural Experimental Station Circular 347:1–39

  • Jordan PM (1990) Biosynthesis of Tetrapyrroles. In: Dailey HA (ed) Biosynthesis of heme and chlorophylls. Mc Graw-Hill Book Co:55–121

  • Mauzerall M, Granick S (1956) The occurrence and determination of ALA and PBG in urine. J Biol Chem 219:435–439

    PubMed  CAS  Google Scholar 

  • Moral R, Gomez I, Navarro-Pedreno J, Mataix J (1994) Effects of cadmium on nutrient distribution, yield and growth of tomato grown in soil-less culture. J Plant Nutr 17:953–962

    CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Noriega GO, Tomaro ML, Batlle A (2003) Bilirubin is highly effective in preventing in vivo δ-aminolevulinic acid-induced oxidative cell damage. Biochim Biophys Acta 1638:173–178

    PubMed  CAS  Google Scholar 

  • Ortega-Villasante C, Rellan Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernandez LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Ouzonidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Cont Toxicol 32:154–160

    Article  Google Scholar 

  • Paredes S, Kozicki P, Fukuda H, Rossetti MV, Batlle AM (1987) S-adenosyl-l-methionine: its effect on aminolevulinic acid dehydratase and glutathione in acute ethanol intoxication. Alcohol 4:81–85

    Article  PubMed  CAS  Google Scholar 

  • Poschenrieder CH, Gense B, Barcelo J (1989) Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    PubMed  CAS  Google Scholar 

  • Princ F, Juknat AA, Amitrano A, Batlle A (1998) Effect of reactive oxygen species promoted by ALA on porpjyrin biosynthesis and glucose uptake. Gen Pharmacol 31:143–151

    Article  PubMed  CAS  Google Scholar 

  • Princ F, Juknat AA, Maxit G, Cardalda C, Batlle A (1997) Melatonin antioxidant protection against 5-aminoleviulinic acid induces oxidative damage in rat cerebellum. J Pineal Res 23:40–52

    Article  PubMed  CAS  Google Scholar 

  • Reyter SW, Tyrrel RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Rad Biol Med 28:289–309

    Article  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio L (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M, Gomez M, Del Río LA, Sandalio LM (2006) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol (in press)

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2·- and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium–induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2226

    PubMed  CAS  Google Scholar 

  • Sangwan I, O’Brian MR (1991) Evidence for an inter-organismic heme biosynthesis pathway in symbiotic root nodules. Science 251:1220–1222

    Article  PubMed  CAS  Google Scholar 

  • Schaumburg A, Schneider-Poetsch HA, Eckerskorn C (1992) Characterization of plastid 5-aminolevulinate dehydratase from spinach (Spinacia oleracea L.) by sequencing and comparison with non-plant ALAD enzymes. Z Naturforsch C 47:77–84

    PubMed  CAS  Google Scholar 

  • Stochs SJ, Bagchi D (1995) Oxidative mechanism in the toxicity of metal ions. Free Rad Biol Med 18:321–336

    Article  Google Scholar 

  • Thomas J, Weinstein JD (1992) Free heme in isolated chloroplasts–an improved method of assay and its physiological importance. Plant Physiol Biochem 30:285–292

    CAS  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequence in human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wang LY (1999) Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 181:1211–1219

    PubMed  CAS  Google Scholar 

  • Weinstein JD, Beale SI (1985) Enzymatic conversion of glutamate to delta-aminolevulinate in soluble extracts of the unicellular green-alga Chlorella vulgaris. Arch Biochem Biophys 237:454–464

    Article  PubMed  CAS  Google Scholar 

  • Zaman Z, Jordan PM, Akhtar M (1973) Mechanism and stereochemistry of the 5-aminolaevulinate synthetase reaction. Biochem J 135:257–263

    PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4