A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10519-006-9093-4 below:

Establishment of a Battery of Simple Models for Facets of Bipolar Disorder: A Practical Approach to Achieve Increased Validity, Better Screening and Possible Insights into Endophenotypes of Disease

  • Agmo A, Medrano A, Garrido N, Alonso P (1997) GABAergic drugs inhibit amphetamine-induced distractibility in the rat. Pharmacol Biochem Behav 58(1):119–126

    PubMed  CAS  Google Scholar 

  • Akil H (2005) Stressed and depressed. Nat Med 11(2):116–118

    PubMed  CAS  Google Scholar 

  • Anand A, Verhoeff P, Seneca N, Zoghbi SS, Seibyl JP, Charney DS, Innis RB (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatr 157(7):1108–1114

    PubMed  CAS  Google Scholar 

  • Angrist B, Gershon S (1979) Variable attenuation of amphetamine effects by lithium. Am J Psychiatr 136(6):806–810

    PubMed  CAS  Google Scholar 

  • Antelman SM, Caggiula AR, Kiss S, Edwards DJ, Kocan D, Stiller R (1995) Neurochemical and physiological effects of cocaine oscillate with sequential drug treatment: possibly a major factor in drug variability. Neuropsychopharmacology 12(4):297–306

    PubMed  CAS  Google Scholar 

  • Antelman SM, Caggiula AR, Kucinski BJ, Fowler H, Gershon S, Edwards DJ, Austin MC, Stiller R, Kiss S, Kocan D (1998) The effects of lithium on a potential cycling model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatr 22(3):495–510

    CAS  Google Scholar 

  • Arriaga F, Dugovic C, Wauquier A (1988) Effects of lithium on dopamine behavioural supersensitivity induced by rapid eye movement sleep deprivation. Neuropsychobiology 20(1):23–27

    PubMed  CAS  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 101(14):5099–5104. Epub 2004 Mar 24

    PubMed  CAS  Google Scholar 

  • Belmaker RH, Lerer B, Klein E, Hamburger R (1982) The use of behavioral methods in the search for compounds with lithium-like activity. In: Levy A, Spiegelstein MY (eds) Behavioral models and the analysis of drug action. Elsevier, Amsterdam, pp 343–356

    Google Scholar 

  • Belozertseva IV, Sukhotina IA, Vossen JM, Bespalov AY (2004) Facilitation of aggressive and sexual behaviors by saccharin deprivation in rats. Physiol Behav 80(4):531–539

    PubMed  CAS  Google Scholar 

  • Berggren U (1985) Effects of chronic lithium treatment on brain monoamine metabolism and amphetamine-induced locomotor stimulation in rats. J Neural Transm 64(3–4):239–250

    PubMed  CAS  Google Scholar 

  • Berggren U, Engel J, Liljequist S (1981) The effect of lithium on the locomotor stimulation induced by dependence-producing drugs. J Neural Transm 50(2–4):157–164

    PubMed  CAS  Google Scholar 

  • Berggren U, Tallstedt L, Ahlenius S, Engel J (1978) The effect of lithium on amphetamine-induced locomotor stimulation. Psychopharmacology (Berl) 59(1):41–45

    CAS  Google Scholar 

  • Berridge CW, Stalnaker TA (2002) Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex. Synapse 46(3):140–149

    PubMed  CAS  Google Scholar 

  • Bhatnagar S, Vining C (2003) Facilitation of hypothalamic–pituitary–adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm. Horm Behav 43(1):158–165

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Griebel G, Farrokhi C, Markham C, Yang M, Blanchard DC (2005) AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacol Biochem Behav 80(1):189–194. Epub 2004 Dec 15

    PubMed  CAS  Google Scholar 

  • Borison RL, Sabelli HC, Maple PJ, Havdala HS, Diamond BI (1978) Lithium prevention of amphetamine-induced ‘manic’ excitement and of reserpine-induced ‘depression’ in mice: possible role of 2-phenylethylamine. Psychopharmacology (Berl) 59(3):259–262

    CAS  Google Scholar 

  • Broderick P, Lynch V (1982) Behavioral and biochemical changes induced by lithium and l-tryptophan in muricidal rats. Neuropharmacology 21(7):671–679

    PubMed  CAS  Google Scholar 

  • Cabib S (1993) Strain-dependent behavioural sensitization to amphetamine: role of environmental influences. Behav Pharmacol 4(4):367–374

    PubMed  CAS  Google Scholar 

  • Caggiula AR, Antelman SM, Kucinski BJ, Fowler H, Edwards DJ, Austin MC, Gershon S, Stiller R (1998) Oscillatory-sensitization model of repeated drug exposure: cocaine’s effects on shock-induced hypoalgesia. Prog Neuropsychopharmacol Biol Psychiatr 22(3):511–521

    CAS  Google Scholar 

  • Cappeliez P, Moore E (1990) Effects of lithium on an amphetamine animal model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatr 14(3):347–358

    CAS  Google Scholar 

  • Carroll BJ, Curtis GC, Mendels J (1976) Neuroendocrine regulation in depression. I. Limbic system-adrenocortical dysfunction. Arch Gen Psychiatr 33(9):1039–1044

    PubMed  CAS  Google Scholar 

  • Chen B, Wang JF, Young LT (2000) Chronic valproate treatment increases expression of endoplasmic reticulum stress proteins in the rat cerebral cortex and hippocampus. Biol Psychiatr 48(7):658–664

    CAS  Google Scholar 

  • Chen G, Yuan PX, Jiang YM, Huang LD, Manji HK (1999) Valproate robustly enhances AP-1 mediated gene expression. Brain Res Mol Brain Res 64(1):52–58

    PubMed  CAS  Google Scholar 

  • Csaba G, Karabelyos C (2001) The effect of a single neonatal treatment (hormonal imprinting) with the antihormones, tamoxifen and mifepristone on the sexual behavior of adult rats. Pharmacol Res 43(6):531–534

    PubMed  CAS  Google Scholar 

  • Daban C, Vieta E, Mackin P, Young AH (2005) Hypothalamic–pituitary–adrenal axis and bipolar disorder. Psychiatr Clin North Am 28(2):469–480

    PubMed  CAS  Google Scholar 

  • Decker S, Grider G, Cobb M, Li XP, Huff MO, El-Mallakh RS, Levy RS (2000) Open field is more sensitive than automated activity monitor in documenting ouabain-induced hyperlocomotion in the development of an animal model for bipolar illness. Prog Neuropsychopharmacol Biol Psychiatr 24(3):455–462

    CAS  Google Scholar 

  • Ebner K, Wotjak CT, Landgraf R, Engelmann M (2005) Neuroendocrine and behavioral response to social confrontation: residents versus intruders, active versus passive coping styles. Horm Behav 47(1):14–21

    PubMed  CAS  Google Scholar 

  • Ebstein RP, Eliashar S, Belmaker RH, Ben-Uriah Y, Yehuda S (1980) Chronic lithium treatment and dopamine-mediated behavior. Biol Psychiatr 15(3):459–467

    CAS  Google Scholar 

  • Einat H (2006) Modelling facets of mania – new directions related to the notion of endophenotypes. J Psychopharmacol 9:9

    Google Scholar 

  • Einat H, Einat D, Allan M, Talangbayan H, Tsafnat T, Szechtman H (1996) Associational and nonassociational mechanisms in locomotor sensitization to the dopamine agonist quinpirole. Psychopharmacology (Berl) 127(2):95–101

    Article  CAS  Google Scholar 

  • Einat H, Karbovski H, Korik J, Tsalah D, Belmaker RH (1999) Inositol reduces depressive-like behaviors in two different animal models of depression. Psychopharmacology (Berl) 144(2):158–162

    CAS  Google Scholar 

  • Einat H, Kofman O, Belmaker RH (2000) Animal models of bipolar disorder: from a single episode to progressive cycling models. In: Myslobodsky M, Weiner I (eds) Contemporary issues in modeling psychopharmacology. Kluwer Academic Publishers, Boston, pp 165–180

    Google Scholar 

  • Einat H, Manji HK (2006) Cellular plasticity cascades: gene to behavior pathways in animal models of bipolar disorder. Biol Psychiatr 59(12):1160–1171

    CAS  Google Scholar 

  • Einat H, Manji HK, Belmaker RH (2003a) New approaches to modeling bipolar disorder. Psychopharmacol Bull 37(1):47–63

    Google Scholar 

  • Einat H, Shaldubina A, Bersudskey Y, Belmaker RH (in press) Prospects for the development of animal models for the study of bipolar disorder. In: Soares JC, Young A (eds) Bipolar disorder: basic mechanisms and therapeutic implications

  • Einat H, Szechtman H (1993) Environmental modulation of both locomotor response and locomotor sensitization to the dopamine agonist quinpirole. Behav Pharmacol 4(4):399–403

    PubMed  CAS  Google Scholar 

  • Einat H, Yuan P, Dogra S, Manji HK (2003b) Does the PKC signaling pathway play a role in the pathophysiology and treatment of bipolar disorder? Biol Psychiatr 53(8 (Supp)):S-399

    Google Scholar 

  • Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003c) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23(19):7311–7316

    CAS  Google Scholar 

  • Fessler RG, Sturgeon RD, London SF, Meltzer HY (1982) Effects of lithium on behaviour induced by phencyclidine and amphetamine in rats. Psychopharmacology (Berl) 78(4):373–376

    CAS  Google Scholar 

  • Flemenbaum A (1974). Does lithium block the effects of amphetamine? A report of three cases. Am J Psychiatr 131(7):820–821

    PubMed  CAS  Google Scholar 

  • Frye CA, Rhodes ME, Walf A, Harney JP (2002) Testosterone enhances aggression of wild-type mice but not those deficient in type I 5alpha-reductase. Brain Res 948(1–2):165–170

    PubMed  CAS  Google Scholar 

  • Gessa GL, Pani L, Fadda P, Fratta W (1995a) Sleep deprivation in the rat: an animal model of mania. Eur Neuropsychopharmacol 5(Suppl):89–93

    CAS  Google Scholar 

  • Gessa GL, Pani L, Serra G, Fratta W (1995b) Animal models of mania. Adv Biochem Psychopharmacol 49:43–66

    CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr 160(4):636–645

    PubMed  Google Scholar 

  • Gould TD (2006) Lithium and amphetamine: endophenotypes, mouse strain differences and transgenic models. Biol Psychiatr 59(8S):95S

    Google Scholar 

  • Gould TD, Gottesman II (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 5(2):113–119

    Google Scholar 

  • Gould TJ, Keith RA, Bhat RV (2001) Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 118(1):95–105

    PubMed  CAS  Google Scholar 

  • Hagan JJ, Jansen JH, Broekkamp CL (1988) Selective behavioural impairment after acute intoxication with trimethyltin (TMT) in rats. Neurotoxicology 9(1):53–74

    PubMed  CAS  Google Scholar 

  • Hall FS, Huang S, Fong GW, Pert A, Linnoila M (1998) Effects of isolation-rearing on voluntary consumption of ethanol, sucrose and saccharin solutions in Fawn Hooded and Wistar rats. Psychopharmacology (Berl) 139(3):210–216

    CAS  Google Scholar 

  • Hamburger-Bar R, Robert M, Newman M, Belmaker RH (1986) Interstrain correlation between behavioural effects of lithium and effects on cortical cyclic AMP. Pharmacol Biochem Behav 24(1):9–13

    PubMed  CAS  Google Scholar 

  • Harrold JA, Williams G (2003) The cannabinoid system: a role in both the homeostatic and hedonic control of eating? Br J Nutr 90(4):729–734

    PubMed  CAS  Google Scholar 

  • Hasler G, Drevets WC, Manji HK, Charney DS (2004) Discovering endophenotypes for major depression. Neuropsychopharmacology 29(10):1765–1781

    PubMed  CAS  Google Scholar 

  • Hasler G, Gould TD, Drevets WC, Gottesman I, Manji KH (2006) Toward constructing an endophenotype strategy for bipolar disorder. Biol Psychiatr (e-pub ahead of print)

  • Haw C, Stubbs J (2005) A survey of the off-label use of mood stabilizers in a large psychiatric hospital. J Psychopharmacol 19(4):402–407

    PubMed  Google Scholar 

  • Hayaishi O (1999) Prostaglandin D2 and sleep – a molecular genetic approach. J Sleep Res 8(Suppl 1):60–64

    PubMed  Google Scholar 

  • Hilakivi LA, Durcan MJ, Lister RG (1989) Effects of caffeine on social behavior, exploration and locomotor activity: interactions with ethanol. Life Sci 44(8):543–553

    PubMed  CAS  Google Scholar 

  • Huey LY, Janowsky DS, Judd LL, Abrams A, Parker D, Clopton P (1981) Effects of lithium carbonate on methylphenidate-induced mood, behavior, and cognitive processes. Psychopharmacology (Berl) 73(2):161–164

    CAS  Google Scholar 

  • Humphries CR, O’Brien M, Paxinos G (1980) PCA: effects on ejaculation, thermoregulation, salivation, and irritability in rats. Pharmacol Biochem Behav 12(6):851–854

    PubMed  CAS  Google Scholar 

  • Islam MW, Tariq M, Ageel AM, al-Said MS, al-Yhya AM (1991) Effect of Salvia haematodes on sexual behaviour of male rats. J Ethnopharmacol 33(1–2):67–72

    PubMed  CAS  Google Scholar 

  • Judd LL, Akiskal HS (2003) The prevalence and disability of bipolar spectrum disorders in the US population: re-analysis of the ECA database taking into account subthreshold cases. J Affect Disord 73(1–2):123–131

    PubMed  Google Scholar 

  • Kavaliers M, Choleris E, Colwell DD (2001) Brief exposure to female odors “emboldens” male mice by reducing predator-induced behavioral and hormonal responses. Horm Behav 40(4):497–509

    PubMed  CAS  Google Scholar 

  • Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, Crites G, Malatynska E (2002) Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 440(1):27–35

    PubMed  CAS  Google Scholar 

  • Krsiak M, Sulcova A, Tomasikova Z, Dlohozkova N, Kosar E, Masek K (1981) Drug effects on attack defense and escape in mice. Pharmacol Biochem Behav 14(Suppl 1):47–52

    PubMed  CAS  Google Scholar 

  • Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293(20):2528–2530

    PubMed  CAS  Google Scholar 

  • Langebartels A, Mathias S, Lancel M (2001) Acute effects of melatonin on spontaneous and picrotoxin-evoked sleep-wake behaviour in the rat. J Sleep Res 10(3):211–217

    PubMed  CAS  Google Scholar 

  • Leblanc-Duchin D, Taukulis HK (2004) Behavioral reactivity to a noradrenergic challenge after chronic oral methylphenidate (ritalin) in rats. Pharmacol Biochem Behav 79(4):641–649

    PubMed  CAS  Google Scholar 

  • Legrand R, Fielder R (1973) Role of dominance–submission relationships in shock-induced fighting of mice. J Comp Physiol Psychol 82(3):501–506

    PubMed  CAS  Google Scholar 

  • Lerer B, Globus M, Brik E, Hamburger R, Belmaker RH (1984) Effect of treatment and withdrawal from chronic lithium in rats on stimulant-induced responses. Neuropsychobiology 11(1):28–32

    Article  PubMed  CAS  Google Scholar 

  • Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatr 28(2):209–224

    Google Scholar 

  • Malatynska E, Knapp RJ (2005) Dominant–submissive behavior as models of mania and depression. Neurosci Biobehav Rev 29(4–5):715–737

    PubMed  Google Scholar 

  • Malick JG (1978) Inhibition of fighting in isolated mice following repeated administration of lithium chloride. Pharmacol Biochem Behav 8(5):579–581

    PubMed  CAS  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125(1–2):167–181

    PubMed  CAS  Google Scholar 

  • Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology (Berl) 57(1):47–55

    CAS  Google Scholar 

  • Mikics E, Kruk MR, Haller J (2004) Genomic and non-genomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 29(5):618–635

    PubMed  CAS  Google Scholar 

  • Mitchell PJ (2005) Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol 526(1–3):147–162. Epub 2005 Nov 14

    PubMed  CAS  Google Scholar 

  • Murphy DL, Brodie HK, Goodwin FK, Bunney WE Jr (1971) Regular induction of hypomania by l-dopa in “bipolar” manic-depressive patients. Nature 229(5280):135–136

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L, Zalcman S (2002) Preclinical models: status of basic research in depression. Biol Psychiatr 52(6):503–528

    Google Scholar 

  • Nikulina EM, Klimek V (1993) Strain differences in clonidine-induced aggressiveness in mice and its interaction with the dopamine system. Pharmacol Biochem Behav 44(4):821–825

    PubMed  CAS  Google Scholar 

  • Nixon MK, Hascoet M, Bourin M, Colombel MC (1994) Additive effects of lithium and antidepressants in the forced swimming test: further evidence for involvement of the serotoninergic system. Psychopharmacology (Berl) 115(1–2):59–64

    CAS  Google Scholar 

  • Oehler J, Jahkel M, Schmidt J (1985) The influence of chronic treatment with psychotropic drugs on behavioral changes by social isolation. Pol J Pharmacol Pharm 37(6):841–849

    PubMed  CAS  Google Scholar 

  • Paxinos G, Burt J, Atrens DM, Jackson DM (1977) 5-Hydroxytryptamine depletion with para-chlorophenylalanine: effects on eating, drinking, irritability, muricide, and copulation. Pharmacol Biochem Behav 6(4):439–447

    PubMed  CAS  Google Scholar 

  • Persinger MA (1994) Maintained hypersexuality between male rats following chronically induced limbic seizures: implications for bisexuality in complex partial epileptic seizures. Psychol Rep 74(2):647–652

    PubMed  CAS  Google Scholar 

  • Pich EM, Heinrichs SC, Rivier C, Miczek KA, Fisher DA, Koob GF (1993) Blockade of pituitary–adrenal axis activation induced by peripheral immunoneutralization of corticotropin-releasing factor does not affect the behavioral response to social defeat stress in rats. Psychoneuroendocrinology 18(7):495–507

    PubMed  CAS  Google Scholar 

  • Pittman KJ, Jakubovic A, Fibiger HC (1984) The effects of chronic lithium on behavioral and biochemical indices of dopamine receptor supersensitivity in the rat. Psychopharmacology (Berl) 82(4):371–377

    CAS  Google Scholar 

  • Popova NK, Vishnivetskaya GB, Ivanova EA, Skrinskaya JA, Seif I (2000) Altered behavior and alcohol tolerance in transgenic mice lacking MAO A: a comparison with effects of MAO A inhibitor clorgyline. Pharmacol Biochem Behav 67(4):719–727

    PubMed  CAS  Google Scholar 

  • Post RM, Weiss SR (1989) Sensitization, kindling, and anticonvulsants in mania. J Clin Psychiatr 50(Suppl):23–30; discussion 45–47

    Google Scholar 

  • Quartermain D, Stone EA, Charbonneau G (1996) Acute stress disrupts risk assessment behavior in mice. Physiol Behav 59(4–5):937–940

    PubMed  CAS  Google Scholar 

  • Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA (2003) Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. Biol Psychiatr 53(4):352–359

    CAS  Google Scholar 

  • Satoh S, Matsumura H, Nakajima T, Nakahama K, Kanbayashi T, Nishino S, Yoneda H, Shigeyoshi Y (2003) Inhibition of rostral basal forebrain neurons promotes wakefulness and induces FOS in orexin neurons. Eur J Neurosci 17(8):1635–1645

    PubMed  Google Scholar 

  • Shaldivin A, Kaptsan A, Belmaker RH, Einat H, Grisaru N (2001) Transcranial magnetic stimulation in an amphetamine hyperactivity model of mania. Bipolar Disord 3(1):30–34

    PubMed  CAS  Google Scholar 

  • Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker RH (2002) Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm 109(3):433–440

    PubMed  CAS  Google Scholar 

  • Sheard MH (1973) Aggressive behavior: modification by amphetamine, p-chlorophenylalanine and lithium in rats. Agressologie 14(5):327–330

    PubMed  CAS  Google Scholar 

  • Sheard MH (1975) Lithium in the treatment of aggression. J Nerv Ment Dis 160(2–1):108–118

    PubMed  CAS  Google Scholar 

  • Soderpalm AH, Hansen S (1998) Benzodiazepines enhance the consumption and palatability of alcohol in the rat. Psychopharmacology (Berl) 137(3):215–222

    CAS  Google Scholar 

  • Szechtman H, Eilam D (2005) Psychiatric models. In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat: a handbook with tests. Oxford University Press Inc., London, pp 462–474

    Google Scholar 

  • Tecce JJ, Cole JO (1974) Amphetamine effects in man: paradoxical drowsiness and lowered electrical brain acitivity (CNV). Science 185(149):451–453

    PubMed  CAS  Google Scholar 

  • Tecott LH, Nestler EJ (2004) Neurobehavioral assessment in the information age. Nat Neurosci 7(5):462–466

    PubMed  CAS  Google Scholar 

  • Ulrich RE, Craine WH (1964) Behavior: persistence of shock-induced aggression. Science 143:971–973

    PubMed  CAS  Google Scholar 

  • Van Kammen DP, Murphy DL (1975) Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia 44(3):215–224

    PubMed  CAS  Google Scholar 

  • Wehr TA, Sack DA, Rosenthal NE (1987) Sleep reduction as a final common pathway in the genesis of mania. Am J Psychiatr 144(2):201–204

    PubMed  CAS  Google Scholar 

  • Willner P (1991) Behavioral models in psychopharmacology. In: Willner P (ed) Behavioral models in psychopharmacology: theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Woldbye DP, Ulrichsen J, Haugbol S, Bolwig TG (2002) Ethanol withdrawal in rats is attenuated by intracerebroventricular administration of neuropeptide Y. Alcohol Alcohol 37(4):318–321

    PubMed  CAS  Google Scholar 

  • Yuan P, Chen G, Manji HK (1999) Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo. J Neurochem 73(6):2299–2309

    PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4