A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10311-020-01058-x below:

Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review

  • Adhoum N, Monser L, Bellakhal N, Belgaied J-E (2004) Treatment of electroplating wastewater containing Cu2 + , Zn2 + and Cr(VI) by electrocoagulation. J Hazard Mater 112(3):207–213. https://doi.org/10.1016/j.jhazmat.2004.04.018

    Article  CAS  Google Scholar 

  • Aditya GVV, Pujitha BP, Babu NC, Venkateswarlu P (2011) Biosorption of chromium onto Erythrina Variegata Orientalis leaf powder. Korean J Chem Eng 29(1):64–71. https://doi.org/10.1007/s11814-011-0139-9

    Article  CAS  Google Scholar 

  • Ait Ouaissa Y, Chabani M, Amrane A, Bensmaili A (2013) Removal of Cr(VI) from model solutions by a combined electrocoagulation sorption process. Chem Eng Technol 36(1):147–155. https://doi.org/10.1002/ceat.201200375

    Article  CAS  Google Scholar 

  • Akbal F, Camcı S (2010) Comparison of electrocoagulation and chemical coagulation for heavy metal removal. Chem Eng Technol 33(10):1655–1664. https://doi.org/10.1002/ceat.201000091

    Article  CAS  Google Scholar 

  • Akbal F, Camcı S (2011) Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 269(1–3):214–222. https://doi.org/10.1016/j.desal.2010.11.001

    Article  CAS  Google Scholar 

  • Ali Maitlo H, Kim K-H, Yang Park J, Hwan Kim J (2019) Removal mechanism for chromium (VI) in groundwater with cost-effective iron-air fuel cell electrocoagulation. Sep Purif Technol 213:378–388. https://doi.org/10.1016/j.seppur.2018.12.058

    Article  CAS  Google Scholar 

  • Almaguer-Busso G, Velasco-Martínez G, Carreño-Aguilera G, Gutiérrez-Granados S, Torres-Reyes E, Alatorre-Ordaz A (2009) A comparative study of global hexavalent chromium removal by chemical and electrochemical processes. Electrochem Commun 11(6):1097–1100. https://doi.org/10.1016/j.elecom.2009.03.012

    Article  CAS  Google Scholar 

  • Al-Rashdi BAM, Johnson DJ, Hilal N (2013) Removal of heavy metal ions by nanofiltration. Desalination 315:2–17. https://doi.org/10.1016/j.desal.2012.05.022

    Article  CAS  Google Scholar 

  • Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat MR, Alkasrawi M (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem Eng J 260:749–756. https://doi.org/10.1016/j.cej.2014.09.035

    Article  CAS  Google Scholar 

  • Alyuz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167(1–3):482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006

    Article  CAS  Google Scholar 

  • Anarakdim K, Gutierrez G, Cambiella A, Senhadji-Kebiche O, Matos M (2020) The effect of emulsifiers on the emulsion stability and extraction efficiency of Cr(VI) using emulsion liquid membranes (ELMs) formulated with a green solvent. Membranes. https://doi.org/10.3390/membranes10040076

    Article  Google Scholar 

  • Anfar Z, Ait Ahsaine H, Zbair M, Amedlous A, Ait El Fakir A, Jada A, El Alem N (2019a) Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review. Critical Rev Environ Sci Technol 50(10):1043–1084. https://doi.org/10.1080/10643389.2019.1642835

    Article  CAS  Google Scholar 

  • Anfar Z, Amedlous A, Ait El Fakir A, Ait Ahsaine H, Zbair M, Lhanafi S, El Haouti R, Jada A, El Alem N (2019b) Combined methane energy recovery and toxic dye removal by porous carbon derived from anaerobically modified digestate. ACS Omega 4(5):9434–9445. https://doi.org/10.1021/acsomega.9b00524

    Article  CAS  Google Scholar 

  • Anfar Z, Amedlous A, El Fakir AA, Zbair M, Ait Ahsaine H, Jada A, El Alem N (2019c) High extent mass recovery of alginate hydrogel beads network based on immobilized bio-sourced porous carbon@Fe3O4-NPs for organic pollutants uptake. Chemosphere 236:124351. https://doi.org/10.1016/j.chemosphere.2019.124351

    Article  CAS  Google Scholar 

  • Anfar Z, Zbair M, Ahsaine HA, Abdellaoui Y, El Fakir AA, Amaterz EH, Jada A, El Alem N (2019d) Preparation and characterization of porous Carbon@ZnO-NPs for organic compounds removal: classical adsorption versus ultrasound assisted adsorption. ChemistrySelect 4(17):4981–4994. https://doi.org/10.1002/slct.201901043

    Article  CAS  Google Scholar 

  • Anfar Z, Zbair M, Ahsiane HA, Jada A, Alem NE (2020) Microwave assisted green synthesis of Fe2O3: biochar for ultrasonic removal of nonsteroidal anti-inflammatory pharmaceuticals. RSC Adv 10:11371. https://doi.org/10.1039/D0RA00617C

    Article  CAS  Google Scholar 

  • Anirudhan TS, Radhakrishnan PG (2011) Thermodynamics of chromium(III) adsorption onto a cation exchanger derived from saw dust of Jack wood. Environ Chem Lett 9(1):121–125. https://doi.org/10.1007/s10311-009-0255-5

    Article  CAS  Google Scholar 

  • Aoudj S, Khelifa A, Drouiche N, Belkada R, Miroud D (2015) Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: application of a hybrid Fe-Al anode. Chem Eng J 267:153–162. https://doi.org/10.1016/j.cej.2014.12.081

    Article  CAS  Google Scholar 

  • Avila M, Burks T, Akhtar F, Göthelid M, Lansåker PC, Toprak MS, Muhammed M, Uheida A (2014) Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions. Chem Eng J 245:201–209. https://doi.org/10.1016/j.cej.2014.02.034

    Article  CAS  Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4(1):37–59. https://doi.org/10.1002/cben.201600010

    Article  CAS  Google Scholar 

  • Balogh IS, Maga IM, Hardital-Toth A, Andruch V (2000) Spectrophotometric study of the complexation and extraction of chromium(VI) with cyanine dyes. Talanta 75(3):543–549

    Article  Google Scholar 

  • Banno A, Yabuki Y (2020) Simultaneous analysis of seven neonicotinoid pesticides in agricultural products involving solid-phase extraction and surrogate compensation using liquid chromatography-tandem mass spectrometry. J Pesticide Sci 45(1):29–38. https://doi.org/10.1584/jpestics.D19-055

    Article  Google Scholar 

  • Bao S, Duan J, Zhang Y (2018) Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode. Chemosphere 208:14–20. https://doi.org/10.1016/j.chemosphere.2018.05.149

    Article  CAS  Google Scholar 

  • Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2018) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17(2):729–754. https://doi.org/10.1007/s10311-018-00828-y

    Article  CAS  Google Scholar 

  • Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17(2):729–754. https://doi.org/10.1007/s10311-018-00828-y

    Article  CAS  Google Scholar 

  • Bayrak Y, Yesiloglu Y, Gecgel U (2006) Adsorption behavior of Cr(VI) on activated hazelnut shell ash and activated bentonite. Micropor Mesopor Mat 91(1):107–110. https://doi.org/10.1016/j.micromeso.2005.11.010

    Article  CAS  Google Scholar 

  • Blázquez G, Hernáinz F, Calero M, Martín-Lara MA, Tenorio G (2009) The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. Chem Eng J 148(2–3):473–479. https://doi.org/10.1016/j.cej.2008.09.026

    Article  CAS  Google Scholar 

  • Breslin CB, Branagan D, Garry LM (2019) Electrochemical detection of Cr(VI) with carbon nanotubes decorated with gold nanoparticles. J Appl Electrochem 49(2):195–205. https://doi.org/10.1007/s10800-018-1259-2

    Article  CAS  Google Scholar 

  • Can OT, Bayramoglu M (2010) The effect of process conditions on the treatment of benzoquinone solution by electrocoagulation. J Hazard Mater 173(1–3):731–736. https://doi.org/10.1016/j.jhazmat.2009.08.146

    Article  CAS  Google Scholar 

  • Cavaco SA, Fernandes S, Quina MM, Ferreira LM (2007) Removal of chromium from electroplating industry effluents by ion exchange resins. J Hazard Mater 144(3):634–638. https://doi.org/10.1016/j.jhazmat.2007.01.087

    Article  CAS  Google Scholar 

  • Chang K-L, Hsieh J-F, Ou B-M, Chang M-H, Hseih W-Y, Lin J-H, Huang P-J, Wong K-F, Chen S-T (2012) Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste. Separ Sci Technol 47(10):1514–1521. https://doi.org/10.1080/01496395.2011.647212

    Article  CAS  Google Scholar 

  • Cheballah K, Sahmoune A, Messaoudi K, Drouiche N, Lounici H (2015) Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation. Chem Eng Process 96:94–99. https://doi.org/10.1016/j.cep.2015.08.007

    Article  CAS  Google Scholar 

  • Chen X, Jiang C, Zhang Y, Wang Y, Xu T (2017) Storable hydrogen production by reverse electro-electrodialysis (REED). J Membr Sci 544:397–405. https://doi.org/10.1016/j.memsci.2017.09.006

    Article  CAS  Google Scholar 

  • Chen XL, Li F, Xie XJ, Li Z, Chen L (2019) Nanoscale zero-valent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal. Int J Environ Res Public Health 16(17):1. https://doi.org/10.3390/ijerph16173046

    Article  CAS  Google Scholar 

  • Choudhury P, Mondal P, Majumdar S, Saha S, Sahoo GC (2018) Preparation of ceramic ultrafiltration membrane using green synthesized CuO nanoparticles for chromium (VI) removal and optimization by response surface methodology. J Clean Prod 203:511–520. https://doi.org/10.1016/j.jclepro.2018.08.289

    Article  CAS  Google Scholar 

  • Colla LM, Dal’Magro C, De Rossi A, Thome A, Reinehr CO, Bertolin TE, Costa JA (2015) Potential of live spirulina platensis on biosorption of hexavalent chromium and its conversion to trivalent chromium. Int J Phytoremediation 17(9):861–868. https://doi.org/10.1080/15226514.2014.964846

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G (1980) Chromium. Wiley, New York

    Google Scholar 

  • Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

    Article  CAS  Google Scholar 

  • de Oliveira RS, Goulart JD, Miranda FS, Ponzio EA (2014) Melt sonoquenching: an affective process to obtain new hybrid material and achieve enhanced electrochromic performances based on V2O5/2,4,5-tris(1-methyl-4-pyridinium)-imidazolide tetrafluoroborate nanofibers. J Brazil Chem Soc 25(3):U320–U540

    Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250–251:272–291. https://doi.org/10.1016/j.jhazmat.2013.01.048

    Article  CAS  Google Scholar 

  • Dharnaik AS, Ghosh PK (2014) Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process. Environ Technol 35(17–20):2272–2279. https://doi.org/10.1080/09593330.2014.902108

    Article  CAS  Google Scholar 

  • Duan X, Wang C, Wang T, Xie X, Zhou X, Ye Y (2018) A polysulfone-based anion exchange membrane for phosphoric acid concentration and purification by electro-electrodialysis. J Membr Sci 552:86–94. https://doi.org/10.1016/j.memsci.2018.02.004

    Article  CAS  Google Scholar 

  • Duarte HA, Jha K, Weidner JW (1998) Electrochemical reduction of nitrates and nitrites in alkaline media in the presence of hexavalent chromium. J Appl Electrochem 28(8):811–817. https://doi.org/10.1023/a:1003459603696

    Article  CAS  Google Scholar 

  • El Haouti R, Anfar Z, Chennah A, Amaterz E, Zbair M, El Alem N, Benlhachemi A, Ezahri M (2019) Synthesis of sustainable mesoporous treated fish waste as adsorbent for copper removal. Groundwater Sustain Develop 8:1–9. https://doi.org/10.1016/j.gsd.2018.08.004

    Article  Google Scholar 

  • Elwakeel KZ (2010) Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination 250(1):105–112. https://doi.org/10.1016/j.desal.2009.02.063

    Article  CAS  Google Scholar 

  • Elwakeel KZ, El-Sayed GO, Abo El-Nassr SM (2015) Removal of ferrous and manganous from water by activated carbon obtained from sugarcane bagasse. Desalin Water Treat 55(2):471–483. https://doi.org/10.1080/19443994.2014.919606

    Article  CAS  Google Scholar 

  • Escudero C, Fiol N, Villaescusa I (2006) Chromium sorption on grape stalks encapsulated in calcium alginate beads. Environ Chem Lett 4(4):239–242. https://doi.org/10.1007/s10311-006-0055-0

    Article  CAS  Google Scholar 

  • Fajardo AS, Martins RC, Quinta-Ferreira RM (2014) Treatment of a synthetic phenolic mixture by electrocoagulation using Al, Cu, Fe, Pb, and Zn as anode materials. Ind Eng Chem Res 53(47):18339–18345. https://doi.org/10.1021/ie502575d

    Article  CAS  Google Scholar 

  • Fan H, Ren H, Ma X, Zhou S, Huang J, Jiao W, Qi G, Liu Y (2020) High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal. Chem Eng J 390:124639. https://doi.org/10.1016/j.cej.2020.124639

    Article  CAS  Google Scholar 

  • Feng X, Shang J, Chen J (2017) Photoelectrocatalytic reduction of hexavalent chromium by Ti-doped hydroxyapatite thin film. Molecular Catalysis 427:11–17. https://doi.org/10.1016/j.molcata.2016.09.031

    Article  CAS  Google Scholar 

  • Feng Z-Q, Yuan X, Wang T (2020) Porous polyacrylonitrile/graphene oxide nanofibers designed for high efficient adsorption of chromium ions (VI) in aqueous solution. Chem Eng J 392:123730. https://doi.org/10.1016/j.cej.2019.123730

    Article  CAS  Google Scholar 

  • Fenglian F, Hong L (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. https://doi.org/10.1016/j.jhazmat.2013.12.062

    Article  CAS  Google Scholar 

  • Fengliang F, Jun M, Liping X, Bing T, Weijiang H, Suya L (2013) Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manage 128:6. https://doi.org/10.1016/j.jenvman.2013.06.044

    Article  CAS  Google Scholar 

  • Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J (2003) Biosorption of Cr(VI) using low cost sorbents. Environ Chem Lett 1(2):135–139. https://doi.org/10.1007/s10311-003-0027-6

    Article  CAS  Google Scholar 

  • Frenzel I, Holdik H, Barmashenko V, Stamatialis DF, Wessling M (2006) Electrochemical reduction of dilute chromate solutions on carbon felt electrodes. J Appl Electrochem 36(3):323–332. https://doi.org/10.1007/s10800-005-9074-y

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Fu R, Zhang X, Xu Z, Guo X, Bi D, Zhang W (2017) Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism. Sep Purif Technol 174:362–371. https://doi.org/10.1016/j.seppur.2016.10.058

    Article  CAS  Google Scholar 

  • Gallios GP, Vaclavikova M (2008) Removal of chromium (VI) from water streams: a thermodynamic study. Environ Chem Lett 6(4):235–240. https://doi.org/10.1007/s10311-007-0128-8

    Article  CAS  Google Scholar 

  • Garcia-Seguraa S, Eiband MMSG, Melo JV, AlbertoMartínez-Huitle C (2017) Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies. J Electroanal Chem 801:267–299

    Article  Google Scholar 

  • Ghosh R, Sahu A, Pushpavanam S (2019) Removal of trace hexavalent chromium from aqueous solutions by ion foam fractionation. J Hazard Mater 367:589–598. https://doi.org/10.1016/j.jhazmat.2018.12.105

    Article  CAS  Google Scholar 

  • Giagnorio M, Steffenino S, Mecucci L, Zanetti MC, Tiraferri A (2018) Design and performance of a nanofiltration plant for the removal of chromium aimed at the production of safe potable water. J Environ Chem Eng 6:4467–4475

    Article  CAS  Google Scholar 

  • Giraldo L, Erto A, Moreno-Piraján JC (2013) Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19(2):465–474. https://doi.org/10.1007/s10450-012-9468-1

    Article  CAS  Google Scholar 

  • Gode F, Pehlivan E (2006) Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J Hazard Mater 136(2):330–337. https://doi.org/10.1016/j.jhazmat.2005.12.021

    Article  CAS  Google Scholar 

  • Graça NS, Ribeiro AM, Rodrigues AE (2019) Modeling the electrocoagulation process for the treatment of contaminated water. Chem Eng Sci 197:379–385. https://doi.org/10.1016/j.ces.2018.12.038

    Article  CAS  Google Scholar 

  • Han L, Mao D, Huang Y, Zheng L, Yuan Y, Su Y, Sun S, Fang D (2017) Fabrication of unique Tin(IV) Sulfide/Graphene Oxide for photocatalytically treating chromium(VI)-containing wastewater. J Clean Prod 168:519–525. https://doi.org/10.1016/j.jclepro.2017.09.027

    Article  CAS  Google Scholar 

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742. https://doi.org/10.1002/adma.201000260

    Article  CAS  Google Scholar 

  • He C, Gu L, Xu Z, He H, Fu G, Han F, Huang B, Pan X (2020) Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environ Chem Lett 18(3):561–576. https://doi.org/10.1007/s10311-019-00960-3

    Article  CAS  Google Scholar 

  • Heidmann I, Calmano W (2008) Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation. J Hazard Mater 152(3):934–941. https://doi.org/10.1016/j.jhazmat.2007.07.068

    Article  CAS  Google Scholar 

  • Hosseini SM, Sohrabnejad S, Nabiyouni G, Jashni E, Van der Bruggen B, Ahmadi A (2019) Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis. J Membr Sci 583:292–300. https://doi.org/10.1016/j.memsci.2019.04.069

    Article  CAS  Google Scholar 

  • Hu J, Lo IMC, Chen G (2007) Comparative study of various magnetic nanoparticles for Cr(VI) removal. Sep Purif Technol 56(3):249–256. https://doi.org/10.1016/j.seppur.2007.02.009

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  Google Scholar 

  • Huang X, Zhang J, Peng K, Na Y, Xiong Y, Liu W, Liu J, Lu L, Li S (2019) Functional magnetic nanoparticles for enhancing ultrafiltration of waste cutting emulsions by significantly increasing flux and reducing membrane fouling. J Membr Sci 573:73–84. https://doi.org/10.1016/j.memsci.2018.11.074

    Article  CAS  Google Scholar 

  • Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals (Cu2 + , Cr6 + , Ni2 +) from industrial effluent and modeling of copper reduction. Water Res 39(4):610–616. https://doi.org/10.1016/j.watres.2004.10.011

    Article  CAS  Google Scholar 

  • Ibrahim Turgut H, Eyupoglu V, Ali Kumbasar R (2019) The comprehensive investigation of the room temperature ionic liquid additives in PVC based polymer inclusion membrane for Cr(VI) transport. J Vinyl Add Technol 25(S1):E107–E119. https://doi.org/10.1002/vnl.21649

    Article  CAS  Google Scholar 

  • Jin W, Yan K (2015) Recent advances in electrochemical detection of toxic Cr(VI). RSC Adv 5:37440. https://doi.org/10.1039/C5RA03480A

    Article  CAS  Google Scholar 

  • Jin W, Moats MS, Zheng S, Du H, Zhang Y, Miller JD (2012) Indirect electrochemical Cr(III) oxidation in KOH solutions at an Au electrode: the role of oxygen reduction reaction. J Phys Chem B 116(25):7531–7537. https://doi.org/10.1021/jp303300y

    Article  CAS  Google Scholar 

  • Jin W, Zhang Z, Wu G, Tolba R, Chen A (2014) Integrated lignin-mediated adsorption-release process and electrochemical reduction for the removal of trace Cr(vi). RSC Adv 4(53):27843–27849. https://doi.org/10.1039/c4ra01222d

    Article  CAS  Google Scholar 

  • Ju P, Guo H, Bai J, Liu Q, Zhang H, Liu J, Yu J, Chen R, Wang J (2020) Construction of gel-like swollen-layer on polyacrylonitrile surface and its swelling behavior and uranium adsorption properties. J Colloid Int Sci 576:109–118. https://doi.org/10.1016/j.jcis.2020.04.080

    Article  CAS  Google Scholar 

  • Kabdasli I, Arslan T, Olmez-Hanci T, Arslan-Alaton I, Tunay O (2009) Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. J Hazard Mater 165(1–3):838–845. https://doi.org/10.1016/j.jhazmat.2008.10.065

    Article  CAS  Google Scholar 

  • Kalidhasan S, Rajesh N (2009) Simple and selective extraction process for chromium (VI) in industrial wastewater. J Hazard Mater 170(2–3):1079–1085. https://doi.org/10.1016/j.jhazmat.2009.05.071

    Article  CAS  Google Scholar 

  • Kanagaraj J, Senthilvelan T, Panda RC, Aravindhan R, Mandal AB (2014) Biosorption of trivalent chromium from wastewater: an approach towards green chemistry. Chem Eng Technol 37(10):1741–1750. https://doi.org/10.1002/ceat.201200716

    Article  CAS  Google Scholar 

  • Kim T, Kim T-K, Zoh K-D (2020) Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes. J Water Process Eng 33:101109. https://doi.org/10.1016/j.jwpe.2019.101109

    Article  Google Scholar 

  • Kocaoba S, Akcin G (2002) Removal and recovery of chromium and chromium speciation with MINTEQA2. Talanta 57(1):23–30

    Article  CAS  Google Scholar 

  • Kumar A, Thakur A, Panesar PS (2019) Extraction of hexavalent chromium by environmentally benign green emulsion liquid membrane using tridodecyamine as an extractant. J Ind Eng Chem 70:394–401. https://doi.org/10.1016/j.jiec.2018.11.002

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1):83–98. https://doi.org/10.1016/j.cej.2006.01.015

    Article  CAS  Google Scholar 

  • Kyzas GZ, Matis KA (2015) Nanoadsorbents for pollutants removal: a review. J Mol Liq 203:159–168. https://doi.org/10.1016/j.molliq.2015.01.004

    Article  CAS  Google Scholar 

  • Lee C-G, Lee S, Park J-A, Park C, Lee SJ, Kim S-B, An B, Yun S-T, Lee S-H, Choi J-W (2017) Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere 166:203–211. https://doi.org/10.1016/j.chemosphere.2016.09.093

    Article  CAS  Google Scholar 

  • Li X, Ma X, Sun J, Huang M (2009) Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles. Langmuir 25(3):1675–1684

    Article  CAS  Google Scholar 

  • Li J, Bai J, Huang K, Zhou B, Wang Y, Hu X (2014a) Removal of trivalent chromium in the complex state of trivalent chromium passivation wastewater. Chem Eng J 236:59–65. https://doi.org/10.1016/j.cej.2013.09.084

    Article  CAS  Google Scholar 

  • Li Y, Zhang HM, Zhang HZ, Cao JY, Xu WX, Li XF (2014b) Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application. J Membr Sci 454:478–487

    Article  CAS  Google Scholar 

  • Li G, Yang C, Yao Y, Zeng M (2019) Electrocoagulation of chromium in tannery wastewater by a composite anode modified with titanium: parametric and kinetic study. Desalin Water Treat 171:294–301. https://doi.org/10.5004/dwt.2019.24792

    Article  CAS  Google Scholar 

  • Lin SH, Kiang CD (2003) Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling. Chem Eng J 92(1–3):193–199. https://doi.org/10.1016/s1385-8947(02)00140-7

    Article  CAS  Google Scholar 

  • Liu H, Dong Y, Liu Y, Wang H (2010) Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. J Hazard Mater 178(1):1132–1136. https://doi.org/10.1016/j.jhazmat.2010.01.117

    Article  CAS  Google Scholar 

  • Liu XQ, Zhang G, Xing HQ, Huang P, Zhang XL (2011) Preparation of amphiphilic composite and removal of oil and hexavalent chromium from wastewater. Environ Chem Lett 9(1):127–132. https://doi.org/10.1007/s10311-009-0256-4

    Article  CAS  Google Scholar 

  • Liu Y, Tourbin M, Lachaize S, Guiraud P (2014) Nanoparticles in wastewaters: hazards, fate and remediation. Powder Technol 255:149–156. https://doi.org/10.1016/j.powtec.2013.08.025

    Article  CAS  Google Scholar 

  • Liu J, Hu C, Huang Q (2019) Adsorption of Cu(2 +), Pb(2 +), and Cd(2 +) onto oiltea shell from water. Bioresour Technol 271:487–491. https://doi.org/10.1016/j.biortech.2018.09.040

    Article  CAS  Google Scholar 

  • Lu J, Wang Z-R, Liu Y-L, Tang Q (2016) Removal of Cr ions from aqueous solution using batch electrocoagulation: cr removal mechanism and utilization rate of in situ generated metal ions. Process Saf Environ Prot 104:436–443. https://doi.org/10.1016/j.psep.2016.04.023

    Article  CAS  Google Scholar 

  • Machado R, Carvalho JR, Joana Neiva Correia M (2002) Removal of trivalent chromium(III) from solution by biosorption in cork powder. J Chem Technol Biotechnol 77(12):1340–1348. https://doi.org/10.1002/jctb.724

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2007) Potential of tea factory waste for chromium(VI) removal from aqueous solutions: thermodynamic and kinetic studies. Sep Purif Technol 54(3):291–298. https://doi.org/10.1016/j.seppur.2006.09.017

    Article  CAS  Google Scholar 

  • Mangwandi C, Kurniawan TA, Albadarin AB (2020) Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): kinetics, isotherms and influence of co-existing ions. Chem Eng Res Des 156:251–262. https://doi.org/10.1016/j.cherd.2020.01.034

    Article  CAS  Google Scholar 

  • Mazurek K (2013) Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy 134–135:26–31. https://doi.org/10.1016/j.hydromet.2013.01.011

    Article  CAS  Google Scholar 

  • McGuire MJ, AWWA Research Foundation, Glendale (Calif), Water and Power (2007) Hexavalent chromium removal using anion exchange and reduction with coagulation and filtration. Awwa Research Foundation: American Water Works Association; IWA Publishing, Denver, Colo. London

  • Meirong H, Qianyun P, Xingui L (2006) Rapid and effective adsorption of lead ions on fine poly(phenylenediamine) microparticles. Chem-Eur J 12(14):4341–4350

    Google Scholar 

  • Meirong H, Hongjie L, Xingui L (2012) Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate. J Mater Chem 22(34):17685–17699. https://doi.org/10.1039/c2jm32361c

    Article  CAS  Google Scholar 

  • Mishra A, Gupta B, Kumar N, Singh R, Varma A, Thakur IS (2020) Synthesis of calcite-based bio-composite biochar for enhanced biosorption and detoxification of chromium Cr(VI) by Zhihengliuella sp ISTPL4. Bioresour Technol 307:123262. https://doi.org/10.1016/j.biortech.2020.123262

    Article  CAS  Google Scholar 

  • Moersidik SS, Nugroho R, Handayani M, Kamilawati M, Pratama A (2020) Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using electrocoagulation and advanced oxidation processes. Heliyon 6(2):e03319. https://doi.org/10.1016/j.heliyon.2020.e03319

    Article  Google Scholar 

  • Mohamed A, Nasser WS, Osman TA, Toprak MS, Muhammed M, Uheida A (2017) Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J Colloid Interface Sci 505:682–691. https://doi.org/10.1016/j.jcis.2017.06.066

    Article  CAS  Google Scholar 

  • Ngah WSW, Liang KH (1999) Adsorption of gold(III) ions onto chitosan and N-Carboxymethyl Chitosan: equilibrium studies. Ind Eng Chem Res 38:1411–1414

    Article  CAS  Google Scholar 

  • Niu HC, Volesky B (2006) Biosorption of chromate and vanadate species with waste crab shells. Hydrometallurgy 84(1–2):28–36

    CAS  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Gonçalves F, Pereira R (2015) Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquat Toxicol 165:172–178. https://doi.org/10.1016/j.aquatox.2015.05.021

    Article  CAS  Google Scholar 

  • Olmez T (2009) The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J Hazard Mater 162(2–3):1371–1378. https://doi.org/10.1016/j.jhazmat.2008.06.017

    Article  CAS  Google Scholar 

  • Olmez-Hanci T, Kartal Z, Arslan-Alaton I (2012) Electrocoagulation of commercial naphthalene sulfonates: process optimization and assessment of implementation potential. J Environ Manage 99:44–51. https://doi.org/10.1016/j.jenvman.2012.01.006

    Article  CAS  Google Scholar 

  • Ouasfi N, Zbair M, Bouzikri S, Anfar Z, Sabbar E, Khamliche L (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9:9792. https://doi.org/10.1039/C9RA01086F

    Article  CAS  Google Scholar 

  • Parambadath S, Mathew A, Barnabas MJ, Kim SY, Ha C-S (2015) Concentration-dependant selective removal of Cr(III), Pb(II) and Zn(II) from aqueous mixtures using 5-methyl-2-thiophenecarboxaldehyde Schiff base-immobilised SBA-15. J Sol-Gel Sci Technol 79(3):426–439. https://doi.org/10.1007/s10971-015-3923-x

    Article  CAS  Google Scholar 

  • Pehlivan E, Kahraman H (2011) Sorption equilibrium of Cr(VI) ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-cost adsorbents. Fuel Process Technol 92(1):65–70. https://doi.org/10.1016/j.fuproc.2010.08.021

    Article  CAS  Google Scholar 

  • Peng H, Liu Z, Tao C (2017a) Adsorption kinetics and isotherm of vanadium with melamine. Water Sci Technol J Int Assoc Water Pollut Res 75(10):2316–2321. https://doi.org/10.2166/wst.2017.094

    Article  CAS  Google Scholar 

  • Peng H, Liu Z, Tao C (2017b) Adsorption process of vanadium (v) with melamine. Water Air Soil Pollut 228(8):272. https://doi.org/10.1007/s11270-017-3452-z

    Article  CAS  Google Scholar 

  • Peng H, Guo J, Li B, Liu Z, Tao C (2018) High-efficient recovery of chromium (VI) with lead sulfate. J Taiwan Institute Chem Eng 85:149–154. https://doi.org/10.1016/j.jtice.2018.01.028

    Article  CAS  Google Scholar 

  • Peng H, Leng Y, Cheng Q, Shang Q, Shu J, Guo J (2019a) Efficient removal of hexavalent chromium from wastewater with electro-reduction. Processes 7(1):41. https://doi.org/10.3390/pr7010041

    Article  CAS  Google Scholar 

  • Peng H, Leng Y, Guo J (2019b) Electrochemical removal of chromium (VI) from wastewater. Appl Sci 9(6):1156. https://doi.org/10.3390/app9061156

    Article  CAS  Google Scholar 

  • Peng H, Shang Q, Chen R, Zhang L, Chen Y, Guo J (2020) Step-adsorption of vanadium (V) and chromium (VI) in the leaching solution with melamine. Sci Rep 10(1):6326. https://doi.org/10.1038/s41598-020-63359-z

    Article  CAS  Google Scholar 

  • Pourmohammad M, Faraji M, Jafarinejad S (2019) Extraction of chromium (VI) in water samples by dispersive liquid–liquid microextraction based on deep eutectic solvent and determination by UV–Vis spectrophotometry. Int J Environ. https://doi.org/10.1080/03067319.2019.1650920

    Article  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946. https://doi.org/10.1016/j.watres.2012.09.058

    Article  CAS  Google Scholar 

  • Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113(1–3):123–129. https://doi.org/10.1016/j.jhazmat.2004.05.039

    Article  CAS  Google Scholar 

  • Rengaraj S, Yeon K-H, Moon S-H (2001a) Removal of chromium from water and wastewater by ion exchange resins. J Hazard Mater 87(1):273–287

    Article  CAS  Google Scholar 

  • Rengaraj S, Yeon K-H, Moon S-H (2001b) Removal of chromium from water and wastewater by ion exchange resins. J Hazard Mater B87:273–287

    Article  Google Scholar 

  • Roberts EPL, Yu H (2002) Chromium removal using a porous carbon felt cathode. J Appl Electrochem 32(10):1091–1099. https://doi.org/10.1023/a:1021282015050

    Article  CAS  Google Scholar 

  • Rodriguez-Valadez F, Ortiz-Éxiga C, Ibanez JG, Alatorre-Ordaz A, Gutierrez-Granados S (2005) Electroreduction of Cr(VI) to Cr(III) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation. Environ Sci Technol 39(6):1875–1879. https://doi.org/10.1021/es049091g

    Article  CAS  Google Scholar 

  • Rongbing F, Xian Z, Zhen X, Xiaopin G, Dongsu B, Wei Z (2017) Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: influencing factors, kinetics and mechanism. Sep Purif Technol 174:362–371. https://doi.org/10.1016/j.seppur.2016.10.058

    Article  CAS  Google Scholar 

  • Sadyrbaeva TZ (2016) Removal of chromium(VI) from aqueous solutions using a novel hybrid liquid membrane—electrodialysis process. Chem Eng Process 99:183–191. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

  • Sahu O, Mazumdar B, Chaudhari PK (2014) Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res 21(4):2397–2413

    Article  CAS  Google Scholar 

  • Sandoval-Olvera IG, González-Muñoz P, Palacio L, Hernández A, Ávila-Rodríguez M, Prádanos P (2019) Ultrafiltration membranes modified by PSS deposition and plasma treatment for Cr(VI) removal. Sep Purif Technol 210:371–381. https://doi.org/10.1016/j.seppur.2018.08.023

    Article  CAS  Google Scholar 

  • Sane P, Chaudhari S, Nemade P, Sontakke S (2018) Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2. J Environ Chem Eng 6(1):68–73. https://doi.org/10.1016/j.jece.2017.11.060

    Article  CAS  Google Scholar 

  • Scialdone O (2009) Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: a simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim Acta 54(26):6140–6147. https://doi.org/10.1016/j.electacta.2009.05.066

    Article  CAS  Google Scholar 

  • Semghouni H, Bey S, Figoli A, Criscuoli A, Benamor M, Drioli E (2020) Chromium (VI) removal by Aliquat-336 in a novel multiframe flat sheet membrane contactor. Chem Eng Process Process Intensification 147:107765. https://doi.org/10.1016/j.cep.2019.107765

    Article  CAS  Google Scholar 

  • Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13(9):2373–2384. https://doi.org/10.1016/j.rser.2009.06.003

    Article  CAS  Google Scholar 

  • Shakoor MB, Ali S, Rizwan M, Abbas F, Bibi I, Riaz M, Khalil U, Niazi NK, Rinklebe J (2020) A review of biochar-based sorbents for separation of heavy metals from water. Int J Phytoremediation 22(2):111–126. https://doi.org/10.1080/15226514.2019.1647405

    Article  CAS  Google Scholar 

  • Sharma D, Chaudhari PK, Prajapati AK (2019) Removal of chromium (VI) and lead from electroplating effluent using electrocoagulation. Separ Sci Technol 55(2):321–331. https://doi.org/10.1080/01496395.2018.1563157

    Article  CAS  Google Scholar 

  • Shi M, Li Z, Yuan Y, Yue T, Wang J, Li R, Chen J (2015) In situ oxidized magnetite membranes from 316L porous stainless steel via a two-stage sintering process for hexavalent chromium [Cr(VI)] removal from aqueous solutions. Chem Eng J 265:84–92. https://doi.org/10.1016/j.cej.2014.12.018

    Article  CAS  Google Scholar 

  • Shu J, Liu R, Wu H, Liu Z, Sun X, Tao C (2018a) Adsorption of methylene blue on modified electrolytic manganese residue: kinetics, isotherm, thermodynamics and mechanism analysis. J Taiwan Inst Chem Eng 82:351–359. https://doi.org/10.1016/j.jtice.2017.11.020

    Article  CAS  Google Scholar 

  • Shu J, Wu H, Liu R, Liu Z, Li B, Chen M, Tao C (2018b) Simultaneous stabilization/solidification of Mn(2 +) and NH4(+)-N from electrolytic manganese residue using MgO and different phosphate resource. Ecotoxicol Environ Saf 148:220–227. https://doi.org/10.1016/j.ecoenv.2017.10.027

    Article  CAS  Google Scholar 

  • Shu J, Wu H, Chen M, Peng H, Li B, Liu R, Liu Z, Wang B, Huang T, Hu Z (2019) Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Res 153:229–238. https://doi.org/10.1016/j.watres.2018.12.044

    Article  CAS  Google Scholar 

  • Song J, Kong H, Jang J (2011) Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J Colloid Interf Sci 359(2):505–511. https://doi.org/10.1016/j.jcis.2011.04.034

    Article  CAS  Google Scholar 

  • Stergioudi F, Kaprara E, Simeonidis K, Sagris D, Mitrakas M, Vourlias G, Michailidis N (2015) Copper foams in water treatment technology: removal of hexavalent chromium. Mater Des 87:287–294. https://doi.org/10.1016/j.matdes.2015.08.022

    Article  CAS  Google Scholar 

  • Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288. https://doi.org/10.1016/j.desal.2010.04.069

    Article  CAS  Google Scholar 

  • Tanaka N, Yamaki T, Asano M, Terai T (2019) Effect of HIx solution concentration on ion-exchange membrane performance in electro-electrodialysis. J Membr Sci 587:117171. https://doi.org/10.1016/j.memsci.2019.117171

    Article  CAS  Google Scholar 

  • Tang W-W, Zeng G-M, Gong J-L, Liang J, Xu P, Zhang C, Huang B-B (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–469:1014–1027. https://doi.org/10.1016/j.scitotenv.2013.09.044

    Article  CAS  Google Scholar 

  • Vilardi G, Di Palma L, Verdone N (2019) A physical-based interpretation of mechanism and kinetics of Cr(VI) reduction in aqueous solution by zero-valent iron nanoparticles. Chemosphere 220:590–599. https://doi.org/10.1016/j.chemosphere.2018.12.175

    Article  CAS  Google Scholar 

  • Wang H, Na C (2014) Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Appl Mater Interfaces 6(22):20309–20316. https://doi.org/10.1021/am505838r

    Article  CAS  Google Scholar 

  • Wang X, Pehkonen SO, Ray AK (2004) Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim Acta 49(9):1435–1444. https://doi.org/10.1016/j.electacta.2003.10.030

    Article  CAS  Google Scholar 

  • Wang X, Wang Y, Zhang X, Feng H, Li C, Xu T (2013) Phosphate recovery from excess sludge by conventional electrodialysis (CED) and electrodialysis with bipolar membranes (EDBM). Ind Eng Chem Res 52(45):15896–15904. https://doi.org/10.1021/ie4014088

    Article  CAS  Google Scholar 

  • Xiao G, Meng Q, Wen R (2020) Adsorption of aspirin on the macropore resin with six functional group sites: multiple functional group sites in macropore resin versus the micropore filling in hypercrosslinked resin. React Funct Polym 151:104581. https://doi.org/10.1016/j.reactfunctpolym.2020.104581

    Article  CAS  Google Scholar 

  • Xiaobo Z, Wang L, Sen T, Majian Z, Pengyuan B, Lunjian C (2017) Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud. Chemosphere 175:365–372. https://doi.org/10.1016/j.chemosphere.2017.02.083

    Article  CAS  Google Scholar 

  • Xu T, Huang C (2008) Electrodialysis-based separation technologies: a critical review. AIChE J 54(12):3147–3159. https://doi.org/10.1002/aic.11643

    Article  CAS  Google Scholar 

  • Xu T, Zhou Y, Lei X, Hu B, Chen H, Yu G (2019) Study on highly efficient Cr(VI) removal from wastewater by sinusoidal alternating current coagulation. J Environ Manage 249:109322. https://doi.org/10.1016/j.jenvman.2019.109322

    Article  CAS  Google Scholar 

  • Xuewen W, Caixia X, Mingyu W, Weiliu X (2011) Removal of silicon from vanadate solution using ion exchange and sodium alumino-silicate precipitation. Hydrometallurgy 107(3–4):133–136. https://doi.org/10.1016/j.hydromet.2011.02.001

    Article  CAS  Google Scholar 

  • Yao Y, Hu Y, Yu M, Lian C, Gao M, Zhang J, Li G, Wang S (2018) Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction. Chem Eng J 344:535–544. https://doi.org/10.1016/j.cej.2018.03.089

    Article  CAS  Google Scholar 

  • Yavuz R, Orbak I, Karatepe N (2006) Factors affecting the adsorption of chromium (VI) on activated carbon. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 41(9):1967–1980. https://doi.org/10.1080/10934520600779265

    Article  CAS  Google Scholar 

  • Yoshino H, Kawase Y (2013) Kinetic modeling and simulation of zero-valent iron wastewater treatment process: simultaneous reduction of nitrate, hydrogen peroxide, and phosphate in semiconductor acidic wastewater. Ind Eng Chem Res 52(50):17829–17840. https://doi.org/10.1021/ie402797j

    Article  CAS  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943. https://doi.org/10.1016/S1001-0742(12)60145-4

    Article  CAS  Google Scholar 

  • Zamboulis D, Pataroudi SI, Zouboulis AI, Matis KA (2004) The application of sorptive flotation for the removal of metal ions. Desalination 162:159–168. https://doi.org/10.1016/S0011-9164(04)00039-6

    Article  CAS  Google Scholar 

  • Zaroual Z, Chaair H, Essadki AH, El Ass K, Azzi M (2009) Optimizing the removal of trivalent chromium by electrocoagulation using experimental design. Chem Eng J 148(2–3):488–495. https://doi.org/10.1016/j.cej.2008.09.040

    Article  CAS  Google Scholar 

  • Zbair M, Anfar Z, Ahsaine HA (2019) Reusable bentonite clay: modelling and optimization of hazardous lead and p-nitrophenol adsorption using a response surface methodology approach. RSC Adv 9:5756. https://doi.org/10.1039/C9RA00079H

    Article  CAS  Google Scholar 

  • Zewail TM, Yousef NS (2014) Chromium ions (Cr6 + & Cr3 +) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode. J Electroanal Chem 735:123–128. https://doi.org/10.1016/j.jelechem.2014.09.002

    Article  CAS  Google Scholar 

  • Zhang W, Liu J, Ren Z, Du C, Ma J (2007) Solvent extraction of chromium(VI) with tri-n-butyl phosphate from aqueous acidic solutions. J Chem Eng Data 52:2220–2223

    Article  CAS  Google Scholar 

  • Zhang Z, Liba D, Alvarado L, Chen A (2014) Separation and recovery of Cr(III) and Cr(VI) using electrodeionization as an efficient approach. Sep Purif Technol 137:86–93. https://doi.org/10.1016/j.seppur.2014.09.030

    Article  CAS  Google Scholar 

  • Zhao Y (2018) Removal of chromium using electrochemical approaches: a review. Int J Electrochem Sci 1:1250–1259. https://doi.org/10.20964/2018.02.46

    Article  CAS  Google Scholar 

  • Zhao Z, He J, Feng V, Lin M, Murugadoss V, Ding T, Liu H, Shao Q, Mai X, Wang N, Gu H, Angaiah S, Guo Z (2019) Progress on the photocatalytic reduction removal of chromium contamination. Chem Rec 19(5):873–882. https://doi.org/10.1002/tcr.201800153

    Article  CAS  Google Scholar 

  • Zheng X, Kang F, Liu X, Peng H, JinYang Z (2019) Carbon-coated Mg–Al layered double oxide nanosheets with enhanced removal of hexavalent chromium. J Ind Eng Chem 80:53–64. https://doi.org/10.1016/j.jiec.2019.07.030

    Article  CAS  Google Scholar 

  • Zongo I, Leclerc J-P, Maïga HA, Wéthé J, Lapicque F (2009) Removal of hexavalent chromium from industrial wastewater by electrocoagulation: a comprehensive comparison of aluminium and iron electrodes. Sep Purif Technol 66(1):159–166. https://doi.org/10.1016/j.seppur.2008.11.012

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4