A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10311-018-0741-8 below:

Toxicity and detoxification of heavy metals during plant growth and metabolism

  • Abdullateef B, Kolo BG, Waziri I, Idris MA (2014) Levels of heavy metals in soil as indicator of environmental pollution in Maiduguri, Borno State, Nigeria. Bull Env Pharmacol Life Sci. 3(11):133–136

    Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128(3):1120–1128. https://doi.org/10.1104/pp.010733

    Article  CAS  Google Scholar 

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8(1):87. https://doi.org/10.1186/1471-2229-8-87

    Article  CAS  Google Scholar 

  • Ahanger MA, Akram NA, Ashraf M, Alyemeni MN, Wijaya L, Ahmad P (2017) Plant responses to environmental stresses—from gene to biotechnology. AoB Plants 9(4):1

    Article  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol. https://doi.org/10.1016/j.jgeb.2015.02.001

    Article  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330(10):735–746. https://doi.org/10.1016/j.crvi.2007.08.001

    Article  CAS  Google Scholar 

  • Alemayehu A, Zelinová V, Bočová B, Huttová J, Mistrík I, Tamás L (2015) Enhanced nitric oxide generation in root transition zone during the early stage of cadmium stress is required for maintaining root growth in barley. Plant Soil 390:213–222. https://doi.org/10.1007/s11104-015-2397-5

    Article  CAS  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MA, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I (2015) Jacks of metal/metalloid chelation trade in plants-an overview. Front Plant Sci 6:192. https://doi.org/10.3389/fpls.2015.00192

    Article  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588. https://doi.org/10.1074/jbc.M602135200

    Article  CAS  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Manag 5(3):56–66

    Google Scholar 

  • Bae J, Leo CP, Hsu Sheau Yu, Hsueh AJ (2000) MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 275(33):25255–25261. https://doi.org/10.1074/jbc.M909826199

    Article  CAS  Google Scholar 

  • Baekgaard L, Mikkelsen MD, Sørensen DM, Hegelund JN, Persson DP, Mills RF, Yang Z, Husted S, Peter Andersen J, Buch-Pedersen MJ, Schjoerring JK, Williams LE, Palmgren MG (2010) A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 285(41):31243–31252. https://doi.org/10.1074/jbc.M110.111260

    Article  CAS  Google Scholar 

  • Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep 3:2195. https://doi.org/10.1038/srep02195

    Article  Google Scholar 

  • Barrera-Diaz CE, Lugo-lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34. https://doi.org/10.1590/s1677-04202005000100003

    Article  CAS  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26. https://doi.org/10.1186/1741-7007-6-26

    Article  CAS  Google Scholar 

  • Bini C, Wahsha M, Fontana S, Maleci L (2012) Effects of heavy metals on morphological characteristics of Taraxacum officinale Web growing on mine soils in NE Italy. J Geochem Explor 123:101–108. https://doi.org/10.1016/j.gexplo.2012.07.009

    Article  CAS  Google Scholar 

  • Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7:1121–1130. https://doi.org/10.1002/pmic.200600712

    Article  CAS  Google Scholar 

  • Bortey-Sam N, Nakayama SMM, Akoto O, Ikenaka Y, Fobil JN, Baidoo E, Mizukawa H, Ishizuka M (2015) Accumulation of heavy metals and metalloid in foodstuffs from agricultural soils around Tarkwa area in Ghana, and associated human health risks. Int J Environ Res Public Health 12(8):8811–8827. https://doi.org/10.3390/ijerph120808811

    Article  CAS  Google Scholar 

  • Buhari ML, Sulaiman BR, Vyas NL, Sulaiman B, Harisu UY (2016) Role of Biotechnology in Phytoremediation. J Bioremed Biodeg 7:330. https://doi.org/10.4172/2155-6199.1000330

    Article  CAS  Google Scholar 

  • Cao F, Chen F, Sun H, Zhang G, Chen Z-H, Wu F (2014) Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genom 15:611. https://doi.org/10.1186/1471-2164-15-611

    Article  CAS  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019. https://doi.org/10.1590/S1415-47572012000600016

    Article  CAS  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74(5):688–702. https://doi.org/10.1016/j.chemosphere.2008.09.082

    Article  CAS  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265. https://doi.org/10.1081/CSS-120027648

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34(1):1–20. https://doi.org/10.1111/j.1365-3040.2010.02232.x

    Article  CAS  Google Scholar 

  • Chen J, Yang ZM (2012) Mercury toxicity, molecular response and tolerance in higher plants. Biometals 25(5):847–857. https://doi.org/10.1007/s10534-012-9560-8

    Article  CAS  Google Scholar 

  • Chen Y, Han Y-H, Cao Y, Zhu Y-G, Rathinasabapathi B, Ma LQ (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268. https://doi.org/10.3389/fpls.2017.00268

    Article  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39(24):9377–9390

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC, Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245. https://doi.org/10.3389/fpls.2014.00245

    Article  Google Scholar 

  • Cho U-H, Seo N-H (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168(1):113–120. https://doi.org/10.1016/j.plantsci.2004.07.021

    Article  CAS  Google Scholar 

  • Christen K (2001) The arsenic threat worsens. Environ Sci Technol 35(13):286A–291A. https://doi.org/10.1021/es012394f

    Article  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11. https://doi.org/10.1093/aob/mcn207

    Article  CAS  Google Scholar 

  • Cuypers A, Hendrix S, Reis RAD, Smet SD, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Jaco Vangronsveld EK (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:46. https://doi.org/10.3389/fpls.2016.00470

    Article  Google Scholar 

  • D’Alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12(11):4979–4997. https://doi.org/10.1021/pr400793e

    Article  CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: a review. J Environ Qual 34(5):1707–1745. https://doi.org/10.2134/jeq2004.0014

    Article  CAS  Google Scholar 

  • Dago A, Ariño C, Díaz-Cruz JM, Esteban M (2014) Analysis of phytochelatins and Hg-phytochelatin complexes in Hordeum vulgare plants stressed with Hg and Cd: HPLC study with amperometric detection. Int J Environ Anal Chem 94(7):668–678. https://doi.org/10.1080/03067319.2013.864649

    Article  CAS  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40–52. https://doi.org/10.1016/j.biotechadv.2013.09.006

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 53:1–13. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266. https://doi.org/10.1016/j.envexpbot.2004.02.004

    Article  CAS  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62(10):3563–3573. https://doi.org/10.1093/jxb/err046

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, Suman S, Adhikari B, Shukla Trivedi PK, Pandey V, Tripathi RD (2015a) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5:16205. https://doi.org/10.1038/srep16205

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015b) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189

    Article  CAS  Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defence system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203

    Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr(VI) stress. BMC Genom 11:648. https://doi.org/10.1186/1471-2164-11-648

    Article  CAS  Google Scholar 

  • Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Trivedi PK, Tripathi RD, Chakrabarty D (2014) Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Funct Integr Genomics 14(2):401–417. https://doi.org/10.1007/s10142-014-0361-8

    Article  CAS  Google Scholar 

  • Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114

    Article  CAS  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian IV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26(5):1424–1430

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defence response. Sci World J 2015:1–18. https://doi.org/10.1155/2015/756120

    Article  CAS  Google Scholar 

  • Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31(1):123–143. https://doi.org/10.1111/j.1365-3040.2007.01746.x

    Article  CAS  Google Scholar 

  • Fahr M, Laplaze L, Bendaou N, Hocher V, El Mzibri M, Bogusz D, Smouni A (2013) Effect of lead on root growth. Front Plant Sci 4:175. https://doi.org/10.3389/fpls.2013.00175

    Article  Google Scholar 

  • Fangmin C, Ningchun Z, Haiming X, Yi L, Wenfang Z, Zhiwei Z, Mingxue C (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359(1–3):156–166. https://doi.org/10.1016/j.scitotenv.2005.05.005

    Article  CAS  Google Scholar 

  • Fecht-Christoffers MM, Braun H-P, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133:1935–1946. https://doi.org/10.1104/pp.103.029215

    Article  CAS  Google Scholar 

  • Figueira E, Freitas R, Guasch H, Almeida SFP (2014) Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith. Ecotoxicology 23(2):285–292. https://doi.org/10.1007/s10646-013-1172-8

    Article  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182. https://doi.org/10.3389/fphys.2012.00182

    Article  CAS  Google Scholar 

  • Flocco CG, Lindblom SD, Smits EA (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in brassica juncea. Int J Phytoremed 6(4):289–304

    Article  CAS  Google Scholar 

  • Fontanili L, Lancilli C, Suzui N, Dendena B, Yin YG, Ferri A, Ishii S, Kawachi N, Lucchini G, Fujimaki S, Sacchi GA, Nocito FF (2016) Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice (N Y) 9(1):16–28. https://doi.org/10.1186/s12284-016-0088-3

    Article  Google Scholar 

  • Fuhrs H, Hartwig M, Molina LEB, Heintz D, Van Dorsselaer A, Braun HP, Horst WJ (2008) Early manganese-toxicity response in Vigna unguiculata L.—a proteomic and transcriptomic study. Proteomics 8:149–159. https://doi.org/10.1002/pmic.200700478

    Article  CAS  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999

    Article  CAS  Google Scholar 

  • Fukuda T, Saito A, Wasaki J, Shinano T, Osaki M (2007) Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci 172:1157–1165. https://doi.org/10.1016/j.plantsci.2007.02.020

    Article  CAS  Google Scholar 

  • Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G (2006) Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ Exp Bot 58(1–3):253–260. https://doi.org/10.1016/j.envexpbot.2005.09.008

    Article  CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514. https://doi.org/10.1139/w09-010

    Article  CAS  Google Scholar 

  • Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome-wide identification of rice class i metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomic 12(4):635–647. https://doi.org/10.1007/s10142-012-0297-9

    Article  CAS  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442. https://doi.org/10.3389/fpls.2014.00442

    Article  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6(2):215–222. https://doi.org/10.4161/psb.6.2.14880

    Article  CAS  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544. https://doi.org/10.1016/j.chemosphere.2007.08.043

    Article  CAS  Google Scholar 

  • Green CE, Chaney RL, Bouwkamp J (2003) Interactions between cadmium uptake and phytotoxic levels of zinc in hard red spring wheat. J Plant Nutr 26:417–430. https://doi.org/10.1081/PLN-120017144

    Article  CAS  Google Scholar 

  • Guerra F, Trevizam A, Muraoka T, Marcante N, Caniatti-Brazaca S (2012) Heavy metals in vegetables and potential risk for human health. Sci Agric 69(1):54–60. https://doi.org/10.1590/S0103-90162012000100008

    Article  CAS  Google Scholar 

  • Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147(8):2255–2264. https://doi.org/10.1099/00221287-147-8-2255

    Article  CAS  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 223:33–52. https://doi.org/10.4172/1948-5948.1000310

    Article  CAS  Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68(5):588–597. https://doi.org/10.1007/s00253-005-0005-y

    Article  CAS  Google Scholar 

  • Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 22:2824–2831. https://doi.org/10.1002/1522-2683(200108)22-13%3C2824::AID-ELPS2824%3E3.0.CO;2-C

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11. https://doi.org/10.1093/jexbot/53.366.1

    Article  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Ann Rev Biochem 55:913–951

    Article  CAS  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H et al (2016) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209(2):746–761. https://doi.org/10.1111/nph.13637

    Article  CAS  Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol 8(3):639–648. https://doi.org/10.1007/BF03326249

    Article  CAS  Google Scholar 

  • Heidenreich B, Mayer K, Sandermann H, Ernst D (2001) Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure. Plant Cell Environ 24(11):1227–1234. https://doi.org/10.1046/j.0016-8025.2001.00775.x

    Article  CAS  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66(10):2901–2911. https://doi.org/10.1093/jxb/erv063

    Article  CAS  Google Scholar 

  • Hezbullah M, Sultana S, Chakraborty SR, Patwary MI (2016) Heavy metal contamination of food in a developing country like Bangladesh: an emerging threat to food safety. J Toxicol Environ Health Sci 8(1):1–5. https://doi.org/10.5897/JTEHS2016.0352

    Article  CAS  Google Scholar 

  • Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310. https://doi.org/10.3389/fpls.2012.00310

    Article  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37. https://doi.org/10.1155/2012/872875

    Article  CAS  Google Scholar 

  • Huang Y, Chen Y, Tao S (2002) Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere. Ying Yong Sheng Tai Xue Bao 13(7):859–962

    CAS  Google Scholar 

  • Huda AK, Haque MA, Zaman R, Swaraz AM, Kabir AH (2017) Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L.). Int J Phytoremed 19(3):246–253. https://doi.org/10.1080/15226514.2016.1211986

    Article  CAS  Google Scholar 

  • Hussain A, Qazi JI (2016) Metals-induced functional stress in sulphate-reducing thermophiles. 3 Biotech 6(1):1–8. https://doi.org/10.1007/s13205-015-0342-1

    Article  Google Scholar 

  • Ingle RA, Smith JAC, Sweetlove LJ (2005) Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum. Biometals 18:627–641. https://doi.org/10.1007/s10534-005-2999-0

    Article  CAS  Google Scholar 

  • Irfan M, Hayat S, Ahmad A, Alyemeni MN (2013) Soil cadmium enrichment: allocation and plant physiological manifestations. Saudi J Biol Sci 20(1):1–10. https://doi.org/10.1016/j.sjbs.2012.11.004

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582(11):1625–1628. https://doi.org/10.1016/j.febslet.2008.04.022

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3 + -phytosiderophore and as Fe2+. Plant J 45(3):335–346. https://doi.org/10.1111/j.1365-313X.2005.02624

    Article  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8. https://doi.org/10.1263/jbb.92.1

    Article  CAS  Google Scholar 

  • Jagadeeswaran G, Li YF, Sunkar R (2014) Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J 77(1):85–96. https://doi.org/10.1111/tpj.12364

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  Google Scholar 

  • Jin Q, Xue Z, Don C, Wang Y, Chu L, Xu Y (2015) Identification and characterization of MicroRNAs from tree peony (Paeonia ostii) and their response to copper stress. PLoS One 10(2):e0117584. https://doi.org/10.1371/journal.pone.0117584

    Article  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175. https://doi.org/10.3390/ijms13033145

    Article  CAS  Google Scholar 

  • Kabir AH (2016) Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biol (Stuttg) 18(4):710–719. https://doi.org/10.1111/plb.12436

    Article  CAS  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36(9):2287–2297. https://doi.org/10.1007/s11738-014-1603-z

    Article  CAS  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11(8):982–991. https://doi.org/10.7150/ijbs.12096

    Article  CAS  Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecule. Big Impact Front Plant Sci 7:23. https://doi.org/10.3389/fpls.2016.00023

    Article  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692. https://doi.org/10.1016/j.envpol.2007.06.056

    Article  CAS  Google Scholar 

  • Khan M, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2016) Role of nanomaterials in plants under challenging environments. Plant Physio Biochem 110:194–209. https://doi.org/10.1016/j.plaphy.2016.05.038

    Article  CAS  Google Scholar 

  • Kidd PS, Monterroso C (2005) Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Sci Total Environ 336(1–3):1–11. https://doi.org/10.1016/j.scitotenv.2004.06.003

    Article  CAS  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530. https://doi.org/10.1002/pmic.200701110

    Article  CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218. https://doi.org/10.1111/j.1365-313X.2007.03044.x

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2 + on growth of cowpea (Vigna unguiculata). Environ Pollut 150(2):280–287. https://doi.org/10.1016/j.envpol.2007.01.011

    Article  CAS  Google Scholar 

  • Kopyra M, Gwó DEA (2004) The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol Plant 26(4):459–472. https://doi.org/10.1007/s11738-004-0037-4

    Article  CAS  Google Scholar 

  • Kopyra M, Stachon-Wilk M, Gwozdz EA (2006) Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28:525–536. https://doi.org/10.1007/s11738-006-0048-4

    Article  CAS  Google Scholar 

  • Korenkov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner GJ (2007) Enhanced Cd2 + -selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225(2):403–411. https://doi.org/10.1007/s00425-006-0352-7

    Article  CAS  Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33(1):35–51. https://doi.org/10.1007/s11738-010-0581-z

    Article  CAS  Google Scholar 

  • Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Woźny A (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—a remobilization can occur. Environ Pollut 158(1):325–338. https://doi.org/10.1016/j.envpol.2009.06.035

    Article  CAS  Google Scholar 

  • Kumar KA, Varaprasad P, Rao AVB (2009) Effect of fluoride on catalase, guiacol peroxidase and ascorbate oxidase activities in two verities of mulberry leaves (Morus alba L.). Res J Earth Sci 1(2):69–73

    Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342

    Article  CAS  Google Scholar 

  • Kumari A, Sheokand S, Kumari S (2010) Nitric oxide induced alleviation of toxic effects of short term and long term Cd stress on growth, oxidative metabolism and Cd accumulation in Chickpea. Braz J Plant Physiol 22(4):271–284. https://doi.org/10.1590/S1677-04202010000400007

    Article  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Tulips goesingense. J Exp Bot 52(365):2291–2300. https://doi.org/10.1093/jexbot/52.365.2291

    Article  CAS  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62:1234–1244. https://doi.org/10.1016/j.chemosphere.2005.06.062

    Article  CAS  Google Scholar 

  • Lan HX, Wang ZF, Wang QH, Wang MM, Bao YM, Huang J, Zhang HS (2013) Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Mol Biol Rep 40(2):1201–1210. https://doi.org/10.1007/s11033-012-2162-2

    Article  CAS  Google Scholar 

  • Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145(3):831–842. https://doi.org/10.1104/pp.107.102236

    Article  CAS  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81(4–5):507–522. https://doi.org/10.1007/s11103-013-0020-9

    Article  CAS  Google Scholar 

  • Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One 11(3):e0149750

    Article  Google Scholar 

  • Lin T, Yang W, Lu W, Wang Y, Qi X (2017) Transcription factors PvERF15 and PvMTF-1 form a cadmium stress transcriptional pathway. Plant Physiol 173(3):1565–1573. https://doi.org/10.1104/pp.16.01729

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006) Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. S Afr J Bot 72:391–397

    Article  CAS  Google Scholar 

  • Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. J Agric Food Chem 60(26):6524–6536. https://doi.org/10.1021/jf300724t

    Article  CAS  Google Scholar 

  • Liu YL, Xu Y, Ke-Bing D, Tu BK (2012) Absorption and metabolism mechanisms of inorganic arsenic in plants: a review. Ying Yong Sheng Tai Xue Bao 23(3):842–848

    CAS  Google Scholar 

  • Liu W, Xu L, Wang Y, Shen H, Zhu X, Zhang K, Chen Y, Yu R, Limera C, Liu L (2015) Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14024. https://doi.org/10.1038/srep14024

    Article  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220. https://doi.org/10.1631/jzus.B0710633

    Article  CAS  Google Scholar 

  • Lopez ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J Plant Nutr 30(8):1247–1261. https://doi.org/10.1080/01904160701555143

    Article  CAS  Google Scholar 

  • Machiwa JF (2010) Heavy metal levels in paddy soils and rice (Oryza sativa L.) from wetlands of Lake Victoria basin, Tanzania. Tanz J Sci 36:59–72

    Google Scholar 

  • Macovei A, Gill SS, Tuteja N (2012) microRNAs as promising tools for improving stress tolerance in rice. Plant Signal Behav 7(10):1296–1301. https://doi.org/10.4161/psb.21586

    Article  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194. https://doi.org/10.1016/j.envexpbot.2005.05.006

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162(12):1338–1346

    Article  CAS  Google Scholar 

  • Mansour SA(2014) Heavy metals of special concern to human health and environment. In: Practical food safety: contemporary issues and future directions, pp 213–233. https://doi.org/10.1002/9781118474563.ch12

  • Marchetti C (2013) Role of calcium channels in heavy metal toxicity. ISRN Toxicol 2013:184360. https://doi.org/10.1155/2013/184360

    Article  CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643380701798272

    Article  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47(1):51–54. https://doi.org/10.1007/s00284-002-3889-0

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154(1):29–43. https://doi.org/10.1046/j.1469-8137.2002.00363.x

    Article  CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45(1):30–40. https://doi.org/10.1002/jcb.240450109

    Article  CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61(15):4197–4220. https://doi.org/10.1093/jxb/erq282

    Article  CAS  Google Scholar 

  • Migocka M, Papierniak A, Kosieradzka A, Posyniak E, Maciaszczyk-Dziubinska E, Biskup R, Garbiec A, Marchewka T (2015) Cucumber metal tolerance protein CsMTP9 is a plasma membrane H + -coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells. Plant J 84(6):1045–1058. https://doi.org/10.1111/tpj.13056

    Article  CAS  Google Scholar 

  • Mishra S, Dubey RS (2010) Heavy metal uptake and detoxification mechanisms in plants. Int J Agric 1(2):122–141. https://doi.org/10.3923/ijar.2006.122.l4l

    Article  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039. https://doi.org/10.1016/j.chemosphere.2006.03.033

    Article  CAS  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Ma JF (2016) High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice. Plant Cell Physiol 57(12):2510–2518. https://doi.org/10.1093/pcp/pcw163

    Article  CAS  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-toshoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189(1):190–199. https://doi.org/10.1111/j.1469-8137.2010.03459

    Article  CAS  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) the response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157–1195. https://doi.org/10.1534/genetics.111.128033

    Article  CAS  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. https://doi.org/10.3389/fpls.2016.00303

    Article  Google Scholar 

  • Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16(8):17975–17998. https://doi.org/10.3390/ijms160817975

    Article  CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2 + transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469. https://doi.org/10.1111/j.1747-0765.2006.00055

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Dodge C, Venugopalan VP, Narasimhan SV, Francis AJ (2010) Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes. Appl Environ Microbiol 76(8):2433–2438. https://doi.org/10.1128/AEM.02792-09

    Article  CAS  Google Scholar 

  • Nareshkumar A, Nagamallaiah GV, Pandurangaiah M, Kiranmai K, Amaranathareddy V, Lokesh U, Venkatesh B, Sudhakar C (2015) Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.) cultivars. Agric Sci 6(10):1283–1297. https://doi.org/10.4236/as.2015.610123

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3(10):1476–1489. https://doi.org/10.4236/ajps.2012.310178

    Article  CAS  Google Scholar 

  • Nazir R, Khan M, Masab M, Rehman HU, Rauf NU, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam kohat. J Pharm Sci Res 7:89–97

    CAS  Google Scholar 

  • Ndeddy ARJ, Babalola OO (2016) Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytoremediation 18(2):200–209. https://doi.org/10.1080/15226514.2015.1073671

    Article  CAS  Google Scholar 

  • Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium front. Plant Sci 4(7):230. https://doi.org/10.3389/fpls.2016.00230

    Article  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59(8):2267–2276. https://doi.org/10.1093/jxb/ern097

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Brito DS, Inostroza-Blancheteau C, Fernie AR, Araújo WL (2014) The complex role of mitochondrial metabolism in plant aluminum resistance. Trends Plant Sci 19(6):399–407. https://doi.org/10.1016/j.tplants.2013.12.006

    Article  CAS  Google Scholar 

  • Ogawa I, Nakanishi H, Mori S, Nishizawa NK (2009) Time course analysis of gene regulation under cadmium stress in rice. Plant Soil 325:97–108. https://doi.org/10.1007/s11104-009-0116-9

    Article  CAS  Google Scholar 

  • Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, Matsumoto T (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS One 9(5):e96946. https://doi.org/10.1371/journal.pone.0096946

    Article  CAS  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61. https://doi.org/10.1016/j.envexpbot.2012.04.003

    Article  CAS  Google Scholar 

  • Ovecka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32(1):73–86. https://doi.org/10.1016/j.biotechadv.2013.11.011

    Article  CAS  Google Scholar 

  • Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodeg 7:334. https://doi.org/10.4172/2155-6199.1000334

    Article  CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(1):95–102. https://doi.org/10.1590/S1677-04202005000100008

    Article  CAS  Google Scholar 

  • Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282. https://doi.org/10.1038/nrg3162

    Article  CAS  Google Scholar 

  • Paul S, Datta SK, Datta K (2015) miRNA regulation of nutrient homeostasis in plants. Front Plant Sci 6:232. https://doi.org/10.3389/fpls.2015.00232

    Article  Google Scholar 

  • Paz-Alberto A (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Change 2(1):71–86. https://doi.org/10.4236/ajcc.2013.21008

    Article  Google Scholar 

  • Pedas P, Stokholm MS, Hegelund JN, Ladegård AH, Schjoerring JK, Husted S (2014) Golgi localized barley MTP8 proteins facilitate Mn transport. PLoS One 9(12):e113759. https://doi.org/10.1371/journal.pone.0113759

    Article  CAS  Google Scholar 

  • Pilon M (2016) The copper microRNAs. New Phytol 213(3):1030–1035. https://doi.org/10.1111/nph.14244

    Article  CAS  Google Scholar 

  • Pittman JK, Hirschi KD (2016) CAX-ing a wide net: Cation/H + transporters in metal remediation and abiotic stress signalling. Plant Biol (Stuttgart, Germany) 18(5):741–749. https://doi.org/10.1111/plb.12460

    Article  CAS  Google Scholar 

  • Poschenrieder C, Barcel J (2004) Water relations in heavy metal stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants, 3rd edn. Springer, Berlin, pp 207–270

    Google Scholar 

  • Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S (2015) Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. Plant J 83(4):625–637. https://doi.org/10.1111/tpj.12914

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4

    Article  CAS  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Heliannthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168(3):551–558. https://doi.org/10.1111/j.1469-8137.2005.01519.x

    Article  CAS  Google Scholar 

  • Rahman SH, Khanam D, Adyel TM, Islam MS, Ahsan MA, Akbor MA (2012) Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: implication of seasonal variation and indices. Appl Sci 2(3):584–601. https://doi.org/10.3390/app2030584

    Article  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B, Bag M, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82(7):986–995. https://doi.org/10.1016/j.chemosphere.2010.10.070

    Article  CAS  Google Scholar 

  • Ravichandran S (2011) Possible natural ways to eliminate toxic heavy metals. Int J ChemTech Res 3(4):1886–1890

    Google Scholar 

  • Richau KH, Kozhevnikova AD, Seregin IV, Vooijs R, Koevoets PLM, Smith JAC, Ivanov VB, Schat H (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183(1):106–116. https://doi.org/10.1111/j.1469-8137.2009.02826.x

    Article  CAS  Google Scholar 

  • Roth U, Von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd 2+. J Exp Bot 57:4003–4013. https://doi.org/10.1093/jxb/erl170

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668. https://doi.org/10.1146/annurev.arplant.49.1.643

    Article  CAS  Google Scholar 

  • Saniewski M, Ueda J, Miyamoto K, Urbanek H (2003) Interaction between ethylene and other plant hormones in regulation of plant growth and development in natural conditions and under abiotic and biotic stresses. In: Vendrell M, Klee H, Pech JC, Romojaro F (eds) Biology and biotechnology of the plant hormone ethylene III. IOS Press, Amsterdam, pp 263–270

    Google Scholar 

  • Saranraj P, Sujitha D (2013) Microbial bioremediation of chromium in tannery effluent: a review. Int J Microbiol Res 4(3):305–320. https://doi.org/10.5829/idosi.ijmr.2013.4.3.81228

    Article  CAS  Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130(4):1815–1826

    Article  CAS  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198. https://doi.org/10.1002/pmic.200500543

    Article  CAS  Google Scholar 

  • Satpathy D, Reddy MV, Dhal SP (2014) Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. Biomed Res. https://doi.org/10.1155/2014/545473

    Article  Google Scholar 

  • Schiavon M, Galla G, Wirtz M, Pilon-Smits EAH, Telatin V, Quaggiotti S, Hell R, Barcaccia G, Malagoli M (2012) Transcriptome profiling of genes differentially modulated by sulfur and chromium identifies potential targets for phytoremediation and reveals a complex S-Cr interplay on sulfate transport regulation in B. juncea. J Haz Mater 239–240:192–205. https://doi.org/10.1016/j.jhazmat.2012.08.060

    Article  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoremediation: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51(4):525–533

    Article  CAS  Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78(1):32–62

    Article  Google Scholar 

  • Setia RC, Kaur N, Setia N, Nayyar H (2008) Heavy metal toxicity in plants and phytoremediation. In: Setia RC, Nayyar H, Setia N (eds) Crop improvement: strategies and applications. I.K. International Publishing House Pvt. Ltd., New Delhi, pp 206–218

    Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44. https://doi.org/10.1007/978-3-319-06746-9_1

    Article  CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1(5):375–383. https://doi.org/10.1039/b904571f

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. https://doi.org/10.1590/S1677-04202005000100004

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defence system in growing rice seedlings exposed to toxic concentrations of aluminium. Plant Cell Rep 26(11):2027–2038. https://doi.org/10.1007/s00299-007-0416-6

    Article  CAS  Google Scholar 

  • Sharma D, Tiwari M, Lakhwani D, Tripathi RD, Trivedi PK (2015) Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics 7(1):174–187. https://doi.org/10.1039/c4mt00264d

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39(5):1112–1126. https://doi.org/10.1111/pce.12706

    Article  CAS  Google Scholar 

  • Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot 62(15):5727–5734. https://doi.org/10.1093/jxb/err300

    Article  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72(4):1102–1110. https://doi.org/10.1016/j.ecoenv.2008.09.022

    Article  CAS  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784. https://doi.org/10.1038/srep05784

    Article  CAS  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817

    Article  Google Scholar 

  • Shukla T, Kumar S, Khare R, Tripathi RD, Trivedi PK (2015) Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Front Plant Sci 6:898. https://doi.org/10.3389/fpls.2015.00898

    Article  Google Scholar 

  • Siemianowski O, Barabasz A, Kendziorek M, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz DM (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65(4):1125–1139. https://doi.org/10.1093/jxb/ert471

    Article  CAS  Google Scholar 

  • Singh K (2016) Pollution and vegetable contamination: a review of the impact of various pollutants. Health 5(7):2314–2316

    Google Scholar 

  • Singh S, Lee W, DaSilva NA, Mulchandani A, Chen W (2008) Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol Bioeng 99(2):333–340. https://doi.org/10.1002/bit.21577

    Article  CAS  Google Scholar 

  • Singh H, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20(4):289–297. https://doi.org/10.1016/j.niox.2009.02.004

    Article  CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101(9):3025–3032. https://doi.org/10.1016/j.biortech.2009.12.031

    Article  CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems. Indian J Pharmacol 43(3):246–253. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015a) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front. Plant Sci 6:340. https://doi.org/10.3389/fpls.2015.00340

    Article  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015b) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  Google Scholar 

  • Sinha AK, Ara H (2014) Conscientiousness of mitogen activated protein kinases in acquiring toerance for abiotic stresses in plants. Proc Indian Natl Sci Acad 80(2):211–219

    Article  Google Scholar 

  • Sinha P, Dube BK, Srivastava P, Chatterjee C (2006) Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 65(4):651–656. https://doi.org/10.1016/j.chemosphere.2006.01.068

    Article  CAS  Google Scholar 

  • Skorzynska E, Baszynski T (2000) Does Cd2 + use Ca2 + channels to penetrate into chloroplast?—a preliminary study. Acta Physiol Plant 22(2):171–178. https://doi.org/10.1007/s11738-000-0073-7

    Article  Google Scholar 

  • Skorzynska-Polit E, Pawlikowska-Pawlȩga B, Szczuka E, Dra̧zkiewicz M, Krupa Z (2006) The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Regul 48(1):29–39. https://doi.org/10.1007/s10725-005-4745-6

    Article  CAS  Google Scholar 

  • Sobkowiak R, Deckert J (2006) Proteins induced by cadmium in soybean cells. J Plant Physiol 163:1203–1206. https://doi.org/10.1016/j.jplph.2005.08.017

    Article  CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):914–919

    Article  CAS  Google Scholar 

  • Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107(49):21187–21192. https://doi.org/10.1073/pnas.1013964107

    Article  Google Scholar 

  • Song D, Zhuang D, Jiang D, Fu J, Wang Q (2015) Integrated health risk assessment of heavy metals in Suxian county, South China. Int J Environ Res Public Health 12(7):7100–7117. https://doi.org/10.3390/ijerph120707100

    Article  CAS  Google Scholar 

  • Sun X, Zhang J, Zhang H, Ni Y, Zhang Q, Chen J, Guan Y (2010) The responses of Arabidopsis thaliana to cadmium exposure explored via metabolite profiling. Chemosphere 78(7):840–845. https://doi.org/10.1016/j.chemosphere.2009.11.045

    Article  CAS  Google Scholar 

  • Sunitha M, Lakshmi Sri, Prashant S, Anil Kumar S, Rao S, Lakshmi Narasu M, Kavi Kishor PB (2013) Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants over-expressing phytochelatin synthase and metallothionein genes. Plant Cell Biotechnol Mol Biol 13(3–4):99–104

    Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065

    Article  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850. https://doi.org/10.1093/jxb/err136

    Article  CAS  Google Scholar 

  • Tan CY, Shan XQ, Xu GZ, Lin YM, Chen ZL (2011) Phytoaccumulation of cadmium through Azolla from aqueous solution. Ecol Eng 37(11):1942–1946. https://doi.org/10.1016/j.ecoleng.2011.01.010

    Article  Google Scholar 

  • Tang M, Mao D, Xu L, Li D, Song S, Chen C (2014) Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings. BMC Genom 15:835. https://doi.org/10.1186/1471-2164-15-835

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188(4):206. https://doi.org/10.1007/s10661-016-5211-9

    Article  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25(3):489–505. https://doi.org/10.1007/s10534-012-9541-y

    Article  CAS  Google Scholar 

  • Tiwari KK, Singh NK, Rai UN (2013) Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake. Bull Environ Contam Toxicol 91(3):339–344. https://doi.org/10.1007/s00128-013-1047-y

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK (2014) Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep 4:3964. https://doi.org/10.1038/srep03964

    Article  CAS  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198. https://doi.org/10.1016/j.ecoenv.2011.12.019

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Chakrabarty D, Trivedi PK, Adhikari B (2013) Arsenite tolerance in rice (Oryza sativa L) involves coordinated role of metabolic pathways of thiols and amino acids. Environ Sci Pollut Res 20(2):884–896. https://doi.org/10.1007/s11356-012-1205-5

    Article  CAS  Google Scholar 

  • Tripathi A, Indoliya Y, Tiwari M, Tiwari P, Srivastava D, Kumar Verma P, Verma S, Gautam N, Chakrabarty D (2014) Transformed yeast (Schizosaccharomyces pombe) overexpressing rice Tau class glutathione S-transferase (OsGSTU30 and OsGSTU41) shows enhanced resistance to hexavalent chromium. Metallomics 6(8):1549–1557

    Article  CAS  Google Scholar 

  • Tseng T-Y, Ou J-F, Wang C-Y (2013) Role of the ascorbate-glutathione cycle in paraquat tolerance of rice. Weed Sci 61(3):361–373. https://doi.org/10.1614/WS-D-12-00133.1

    Article  CAS  Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breed 26(2):307–323. https://doi.org/10.1007/s11032-010-9412-6

    Article  CAS  Google Scholar 

  • Tuomainen MH, Nunan N, Lehesranta SJ, Tervahauta AI, Hassinen VH, Schat H, Koistinen KM, Auriola S, McNicol J, Kärenlampi SO (2006) Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6:3696–3706. https://doi.org/10.1002/pmic.200501357

    Article  CAS  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107(38):16500–16505. https://doi.org/10.1073/pnas.1005396107

    Article  Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(1):1–8. https://doi.org/10.1186/1939-8433-5-5

    Article  Google Scholar 

  • Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153–156. https://doi.org/10.1023/B:BIOP.0000024295.27419.89

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12(3):364–372. https://doi.org/10.1016/j.pbi.2009.05.001

    Article  CAS  Google Scholar 

  • Verma S, Verma PK, Meher AK, Bansiwal AK, Tripathi RD, Chakrabarty D (2018) A novel fungal arsenic methyltransferase, WaarsM reduces grainarsenic accumulation in transgenic rice (Oryza sativa L.). J Hazard Mater 344:626–634. https://doi.org/10.1016/j.jhazmat.2017.10.037

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(1):35. https://doi.org/10.1186/1999-3110-55-35

    Article  CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663. https://doi.org/10.1002/pmic.201000645

    Article  CAS  Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809. https://doi.org/10.3389/fpls.2015.00809

    Article  Google Scholar 

  • Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L (2013) Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PLoS One. https://doi.org/10.1371/journal.pone.0066539

    Article  Google Scholar 

  • Wang Y, Xu L, Shen H, Wang J, Liu W, Zhu X, Wang R, Sun X, Liu L (2015) Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots. Sci Rep 5:18296. https://doi.org/10.1038/srep18296

    Article  CAS  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67. https://doi.org/10.3389/fpls.2016.00067

    Article  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176. https://doi.org/10.1016/j.cj.2016.01.010

    Article  Google Scholar 

  • Wu H, Liu X, Zhao J, Yu J, Pang Q, Feng J (2012) Toxicological effects of environmentally relevant lead and zinc in halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology 21(8):2363–2371. https://doi.org/10.1007/s10646-012-0992-2

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol 2011. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Wuana RA, Okieimen FE, Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Technol 7(3):485–496. https://doi.org/10.1007/BF03326158

    Article  CAS  Google Scholar 

  • Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272(48):30061–30066. https://doi.org/10.1074/jbc.272.48.30061

    Article  CAS  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8(5):722–733. https://doi.org/10.1016/j.molp.2015.01.005

    Article  CAS  Google Scholar 

  • Yang ZM, Chen J (2013) A potential role of microRNAs in plant response to metal toxicity. Metallomics 5(9):1184–1190. https://doi.org/10.1039/c3mt00022b

    Article  CAS  Google Scholar 

  • Yang Z, Chu C (2011) Towards understanding plant response to heavy metal stress. Abiotic Stress Plants Mech. Adapt. https://doi.org/10.5772/24204

    Article  Google Scholar 

  • Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ (2006) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant Soil 284(1–2):109–119

    Article  CAS  Google Scholar 

  • Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749. https://doi.org/10.1002/pmic.200600703

    Article  CAS  Google Scholar 

  • Yang Y, Chen R, Fu G, Xiong J, Tao L (2016) Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa). Acta Physiol Plant 38:28. https://doi.org/10.1007/s11738-015-2055-9

    Article  CAS  Google Scholar 

  • Ye J, Rensing C, Rosen BP, Zhu YG (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17(3):155–162. https://doi.org/10.1016/j.tplants.2011.12.003

    Article  CAS  Google Scholar 

  • Yoshida N, Kato T, Yoshida T, Ogawa K, Yamashita M, Murooka Y (2002) Bacterium-based heavy metal biosorbents: enhanced uptake of cadmium by E. coli Expressing a metallothionein fused to beta-galactosidase. Biotechniques 32(5):551–558

    Article  CAS  Google Scholar 

  • Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12:182. https://doi.org/10.1186/1471-2229-12-182

    Article  CAS  Google Scholar 

  • Zeng F, Wu X, Qiu B, Wu F, Jiang L, Zhang G (2014) Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta 240:291–308. https://doi.org/10.1007/s00425-014-2077-3

    Article  CAS  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600. https://doi.org/10.3389/fpls.2015.00600

    Article  Google Scholar 

  • Zhang MK, Ke ZX (2004) Heavy metals, phosphorus and some other elements in urban soils of Hangzhou City, China. Pedosphere 14:177–185

    CAS  Google Scholar 

  • Zhang LW, Song JB, Shu XX, ZhangY Yang ZM (2013) miR395 is involved in detoxification of cadmium in Brassica napus. J Haz Mat 250:204–211

    Article  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

    Article  CAS  Google Scholar 

  • Zhen Y, Qi J-L, Wang S-S, Su J, Xu G-H, Zhang M-S, Miao L, Peng X-X, Tian D, Yang Y-H (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554. https://doi.org/10.1111/j.1399-3054.2007.00979.x

    Article  CAS  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146(4):1673–1686. https://doi.org/10.1104/pp.107.111443

    Article  CAS  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63(12):4597–4613. https://doi.org/10.1093/jxb/ers136

    Article  CAS  Google Scholar 

  • Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143(1):1–9. https://doi.org/10.1111/j.1399-3054.2011.01477.x

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4