A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10311-017-0672-9 below:

Toxic impact of nanomaterials on microbes, plants and animals

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, ZnO water suspensions. Water Res 40(19):3527–3532. https://doi.org/10.1016/j.watres.2006.08.004

    Article  CAS  Google Scholar 

  • Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578e583. https://doi.org/10.1016/j.bbrc.2010.04.156

    Article  CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Raja M et al (2011a) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: the role of oxidative stress. Nanomedicine 7:904e913. https://doi.org/10.1016/j.nano.2011.04.011

    Google Scholar 

  • Ahamed M, Siddiqui MA, Ahmad J, Musarrat J, AlKhedhairy AA, AlSalhi MS, Alrokayan SA (2011b) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101e108. https://doi.org/10.1016/j.tox.2011.02.010

    Article  CAS  Google Scholar 

  • Alarcon EI, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, Ravichandran R, Phopase J, Suuronen EJ, Griffith M (2016) Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale 8:6484–6489. https://doi.org/10.1039/C6NR01339B

    Article  CAS  Google Scholar 

  • Alarifi S, Ali D, Alkahtani S et al (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomed 8:983e993. https://doi.org/10.2147/IJN.S42028

    Google Scholar 

  • American Technion Society (2015) Exposure to nanoparticles may threaten heart health. ScienceDaily. www.sciencedaily.com/releases/2015/01/150108141317.htm

  • Arefian Z, Pishbin F, Negahdary M, Ajdary M (2015) Potential toxic effects of zirconia oxide nanoparticles on liver and kidney factors. Biomed Res 26(1): 89–97. ISSN: 0970-938X

  • Armand L, Tarantini A, Beal D, Biola-Clier M, Bobyk L, Sorieul S, Pernet-Gallay K, Marie-Desvergne C, Lynch I, Herlin-Boime N, Carriere M (2016) Long-term exposure of A549 cells to titanium dioxide nanoparticles induce DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology 10(7):913–923. https://doi.org/10.3109/17435390.2016.1141338

    Article  CAS  Google Scholar 

  • Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43e54. https://doi.org/10.3109/17435390.2010.489207

    Article  CAS  Google Scholar 

  • Awasthi KK, John PJ, Awasthi A, Awasthi K (2013) Multiwalled carbon nanotubes induced hepatotoxicity in Swiss albino mice. Micron 44:359–364. https://doi.org/10.1016/j.micron.2012.08.008

    Article  CAS  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11. https://doi.org/10.7508/ibj.2016.01.001

    Google Scholar 

  • Bakand S, Hayes A (2016) Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 17(6):929. https://doi.org/10.3390/ijms17060929

    Article  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395. https://doi.org/10.1007/s10646-008-0208-y

    Article  CAS  Google Scholar 

  • Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LHC, Correa DS, Ferreira MD (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotechnol Monit Manag 3:22–29. https://doi.org/10.1016/j.enmm.2014.11.002

    Article  Google Scholar 

  • Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, Mitra S, Witzmann FA (2011) Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5(3):354–371. https://doi.org/10.3109/17435390.2010.514076

    Article  CAS  Google Scholar 

  • Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen OP, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res Int 20(5):3456–3463. https://doi.org/10.1007/s11356-012-1290-5

    Article  CAS  Google Scholar 

  • Bowman DM, Van Calster G, Steffi F (2010) Nanomaterials and regulation of cosmetics. Nat Nanotechnol 5(2):92. https://doi.org/10.1038/nnano.2010.12

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870. https://doi.org/10.1021/nl052326h

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71. https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  • Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K et al (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27:330e338. https://doi.org/10.1016/j.tiv.2012.08.021

    Article  CAS  Google Scholar 

  • Chen D, Huang F, Cheng YB, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21:2206–2210. https://doi.org/10.1002/adma.200802603

    Article  CAS  Google Scholar 

  • Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873. https://doi.org/10.3390/nano5020851

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074. https://doi.org/10.1016/j.watres.2008.02.021

    Article  CAS  Google Scholar 

  • Chueh PJ, Liang RY, Lee YH, Zeng ZM, Chuang SM (2014) Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater 264:303–312. https://doi.org/10.1016/j.jhazmat.2013.11.031

    Article  CAS  Google Scholar 

  • Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216. https://doi.org/10.1016/j.toxlet.2012.11.022

    Article  CAS  Google Scholar 

  • Dalai S, Iswarya V, Bhuvaneshwari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Aqua Toxicol 152:139–146. https://doi.org/10.1016/j.aquatox.2014.04.002

    Article  CAS  Google Scholar 

  • Del Vecchio R (2006) Berkeley considering the need for Nano safety, articles.sfgate.com

  • Deng X, Wu F, Liu Z, Luo M, Li L, Ni Q, Jiao Z, Wu M, Liu Y (2009) The splenic toxicity of water soluble multi-walled carbon nanotubes in mice. Carbon 47:1421–1428. https://doi.org/10.1016/j.carbon.2008.12.032

    Article  CAS  Google Scholar 

  • Descotes J (2004) Immunotoxicology of drugs and chemicals: an experimental and clinical approach. Amsterdam Elsevier 1:1–398. ISBN: 978-0-444-51093-8

  • Dikio ED (2011) Morphological characterization of soot from the atmospheric combustion of kerosene. E J Chem 8:1068–1073. https://doi.org/10.1155/2011/323872

    Article  CAS  Google Scholar 

  • Dikio D, Bixa N (2011) Carbon nanotubes synthesis by catalytic decomposition of ethyne using Fe/Ni catalyst on aluminium oxide support. Int J Appl Chem 7:35–42. ISSN: 0973-1792

  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A (2013) Pulmonary toxicity of carbon nanotubes and asbestos—similarities and differences. Adv Drug Deliv Rev 65(15):2078–2086. https://doi.org/10.1016/j.addr.2013.07.014

    Article  CAS  Google Scholar 

  • Donmez Gungunes C, Seker S, Elcin AE, Elcin YM (2016) a comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes, and iron oxide nanoparticles. Drug Chem Toxicol 40(2):215–227. https://doi.org/10.1080/01480545.2016.1199563

    Article  CAS  Google Scholar 

  • Drobne D (2007) Nanotoxicology for safe and sustainable nanotechnology. Arh Hig Rada Toksikol 58:471–478. https://doi.org/10.2478/v10004-007-0040-4

    Article  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials, and sensors. J Colloid Interface Sci 363(1):1–24. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x

    Article  CAS  Google Scholar 

  • Eom H, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in the human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77e83. https://doi.org/10.1016/j.toxlet.2009.01.028

    Article  CAS  Google Scholar 

  • Faedmaleki F, Shirazi FH, Salarian AA, Ashtiani HA, Rastegara H (2014) Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res 13(1):235–242. https://doi.org/10.1186/s12951-015-0114-4

    CAS  Google Scholar 

  • Fahmy B, Cormier SA (2009) Copper oxides nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365e1371. https://doi.org/10.1016/j.tiv.2009.08.005

    Article  CAS  Google Scholar 

  • Fangli Y, Peng H, Chunlei Y, Shulan H, Jinlin L (2003) Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. J Mater Chem 13:634–637. https://doi.org/10.1039/B208346A

    Article  CAS  Google Scholar 

  • Fujimori T, Morelos-Gomez A, Zhu Z, Muramatsu H, Futamura R, Urita K, Terrones M, Hayashi T, Endo M, Hong SY, Choi YC, Tomanek D, Katsumi K (2013) Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 4:2162. https://doi.org/10.1038/ncomms3162

    Article  CAS  Google Scholar 

  • Geiser M et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560. https://doi.org/10.1289/ehp.8006

    Article  Google Scholar 

  • Girigoswami K, Viswanathan M, Murugesan R, Girigoswami A (2015) Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity. Mater Sci Eng C 56:501–510. https://doi.org/10.1016/j.msec.2015.07.017

    Article  CAS  Google Scholar 

  • Gulati N, Gupta H (2012) Two faces of carbon nanotube: toxicities and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 29:65e88. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.20

    Article  Google Scholar 

  • Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2013) Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol In Vitro 27:731e738. https://doi.org/10.1016/j.tiv.2012.12.001

    Google Scholar 

  • Hellstrand E et al (2009) Complete high-density lipoproteins in NP corona. FEBS J 276:3372–3381. https://doi.org/10.1111/j.1742-4658.2009.07062.x

    Article  CAS  Google Scholar 

  • Hillegas JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):219–231. https://doi.org/10.1002/wnan.54

    Article  CAS  Google Scholar 

  • Holsapple MP et al (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88(1):12–17. https://doi.org/10.1093/toxsci/kfi293

    Article  CAS  Google Scholar 

  • Huang Z, Zheng X, Danhong Yan, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langumir 24:4140–4144. https://doi.org/10.1021/la7035949

    Article  CAS  Google Scholar 

  • Huk A, Izak-Nau E, Yamani N, Uggerud H, Vadset M, Zasonska B, Duschl A, Dusinska M (2015) Impact of nanosilver on various DNA lesions and HPRT gene mutations—effects of charge and surface coating. Part Fibre Toxicol. https://doi.org/10.1186/s12989-015-0100-x

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy, and application. Nanoscale Res Lett 9:229–252. https://doi.org/10.1186/1556-276X-9-229

    Article  CAS  Google Scholar 

  • ISO. ISO/TR 12885 (2008) Nanotechnologies—health and safety practices in occupational settings relevant to nanotechnologies, 1st edn. the International Organization for Standardization, Geneva

    Google Scholar 

  • ISO. ISO/TR 13121 (2011) Nanotechnologies—nanomaterial risk evaluation, 1st edn. Geneva, International Organization for Standardization

    Google Scholar 

  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi Vija H, Kakinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS ONE 9(7):e102108. https://doi.org/10.1371/journal.pone.0102108

    Article  CAS  Google Scholar 

  • Jiang G, Shen Z, Niu J, Bao Y, Chen J, He T (2011) Toxicological assessment of TiO2 nanoparticles by recombinant Escherichia coli bacteria. J Environ Monit 13(1):42–48. https://doi.org/10.1039/C0EM00499E

    Article  CAS  Google Scholar 

  • Jimenez JA, Madsen OS (2003) A simple formula to estimate setting velocity of natural sediments. J Waterw Port Coast Ocean Eng 129(2):70–78. https://doi.org/10.1061/(ASCE)0733-950X

    Article  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673. https://doi.org/10.1021/la701067r

    Article  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732. https://doi.org/10.1021/tx800064j

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112e118. https://doi.org/10.1016/j.toxlet.2009.03.014

    Article  CAS  Google Scholar 

  • Kaundal B, Dalai S, Choudhury SR (2017) Nanomaterial toxicity in microbes, plants and animals. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-58496-6_9

    Google Scholar 

  • Kim IY, Joachim E, Choi H, Kim KT (2015) oxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416. https://doi.org/10.1016/j.nano.2015.03.004

    Article  CAS  Google Scholar 

  • Kovriznych JA, Sotnikova R, Zeljenkova D, Rollerova E, Szabova E, Wimmerova S (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages—comparative study. Interdiscip Toxicol 6(2):67–73. https://doi.org/10.2478/intox-2013-0012

    Article  CAS  Google Scholar 

  • Kumar AA, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Rad Biol Med 51:1872e1881. https://doi.org/10.1371/journal.pone.0110247

    Article  CAS  Google Scholar 

  • Kumari M, Ernest V, Mukherjee A, Chandrasekaran N (2012) In vivo nanotoxicity assays in plant models. Methods Mol Biol 926:399–410. https://doi.org/10.1007/978-1-62703-002-1_26

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO alizarin red S nanoconjugates. Nano Lett 10(7):2296–2302. https://doi.org/10.1021/nl903518f

    Article  CAS  Google Scholar 

  • Lei R, Wu C, Yang B et al (2008) Integrated metabolomics analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharm 232:292e301. https://doi.org/10.1016/j.taap.2008.06.026

    Article  CAS  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J (2002) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460. https://doi.org/10.1289/ehp.6000

    Article  CAS  Google Scholar 

  • Li JJ, Hartono D, Ong C, Bay B, Yung LL (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31:5996e6003. https://doi.org/10.1016/j.biomaterials.2010.04.014

    Google Scholar 

  • Lipovsky A, Levitski L, Tzitrinovich Z, Gedanken A, Lubart R (2012) The different behavior of rutile and anatase nanoparticles in forming oxy radicals upon illumination with visible light: an EPR study. Photochem Photobiol 88(1):14–20. https://doi.org/10.1111/j.1751-1097.2011.01015.x

    Article  CAS  Google Scholar 

  • Lopes I, Ribeiro R, Antunes FE, Rocha-Santos TAP, Rasteiro MG, Soares AMVM, Gonçalves F, Pereira R (2012) Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. Ecotoxicology 21(3):637–648. https://doi.org/10.1007/s10646-011-0808-9

    Article  CAS  Google Scholar 

  • Lorenz C, Tiede K, Tear S, Boxall A, Von Goetz N, Hungerbuhler K (2010) Imaging and characterization of engineered nanoparticles in sunscreens by electron microscopy, under wet and dry conditions. Int J Occup Environ Health 16:406–408. https://doi.org/10.1179/107735210799160101

    Article  CAS  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366. https://doi.org/10.1021/es0603655

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake, and accumulation. Sci Total Environ 408(16):3053–3061. https://doi.org/10.1016/j.scitotenv.2010.03.031

    Article  CAS  Google Scholar 

  • Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, Schwegler-Berry D, Castranova V, Ma JK (2011) Cerium oxide NP induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotechnology 5:312e325. https://doi.org/10.3109/17435390.2010.519835

    Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of NP-induced oxidative stress and toxicity. Biomed Res Int. https://doi.org/10.1155/2013/942916

    Google Scholar 

  • Marcone GPS, Oliveira ÁC, Almeida G, Umbuzeiro GA, Jardim WF (2012) Ecotoxicity of TiO2 to Daphnia similis under irradiation. J Hazard Mater 211–212:436–442. https://doi.org/10.1016/j.jhazmat.2011.12.075

    Article  CAS  Google Scholar 

  • Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review.Curr Top Med Chem 15(16):1596–604. ISSN: 1568-0266

  • Milic M, Leitinger G, Pavicic I, Avdicevic MZ, Dobrovic S, Goessler M, Vrcek IV (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35(6):581–592. https://doi.org/10.1002/jat.3081

    Article  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239. https://doi.org/10.1021/es202995d

    Article  CAS  Google Scholar 

  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456. https://doi.org/10.1038/nnano.2009.151

    Article  CAS  Google Scholar 

  • Mukherjee SG, O’Claonadh N, Casey A, Chambers G (2012) Comparative in vitro cytotoxicity study of silver NP on two mammalian cell lines. Toxicol In Vitro 26(2):238–251. https://doi.org/10.1016/j.tiv.2011.12.004

    Article  CAS  Google Scholar 

  • Nel A (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22. https://doi.org/10.1016/j.envpol.2007.06.006

    Article  CAS  Google Scholar 

  • O’Brien N, Cummins E (2010) Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J Environ Sci Health A Tox Hazard Subst Environ Eng 45(8):992–1007. https://doi.org/10.1080/10934521003772410

    Article  CAS  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei A, Elder A, Gelein G, Luntsm A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543. https://doi.org/10.1080/00984100290071658

    Article  CAS  Google Scholar 

  • Oberdorster G et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. https://doi.org/10.1186/1743-8977-2-8

    Article  CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant. Environ Toxicol Chem 32(4):902–907. https://doi.org/10.1002/etc.2131

    Article  CAS  Google Scholar 

  • Pakrashi S, Dalai S, Sabat D, Singh S, Chandrasekaran N, Mukherjee A (2011) Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem Res Toxicol 24:1899–1904. https://doi.org/10.1021/tx200244g

    Article  CAS  Google Scholar 

  • Papageorgiou I, Brown C, Schins R et al (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28(19):2946e2958. https://doi.org/10.1016/j.biomaterials.2007.02.034

    Article  CAS  Google Scholar 

  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168. https://doi.org/10.1016/j.etap.2010.05.004

    Article  CAS  Google Scholar 

  • Pati R, Das I, Mehta RK, Sahu R, Sonawane A (2016) Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol Sci 150(2):454–472. https://doi.org/10.1093/toxsci/kfw010

    Article  CAS  Google Scholar 

  • Petit AN, Eullaffroy P, Debenest T, Gagné F (2010) Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol 100:187–193. https://doi.org/10.1016/j.aquatox.2010.01.019

    Article  CAS  Google Scholar 

  • Petrick L, Rosenblat M, Paland N, Aviram M (2014) Silicon dioxide nanoparticles increase macrophage atherogenicity: stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol 31(6):713–723. https://doi.org/10.1002/tox.22084

    Article  CAS  Google Scholar 

  • Planchon M, Ferrari R, Guyot F, Gélabert A, Menguy N, Chanéacd C, Thill A, Benedetti MF, Spalla O (2013) Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids Surf B 102:158–164. https://doi.org/10.1016/j.colsurfb.2012.08.034

    Article  CAS  Google Scholar 

  • Poma A, Colafarina S, Fontecchio G, Chichiricco G (2014) transgenerational effects of nanomaterials in nanomaterials, impacts on cell biology and medicine. Springer Sci Bus Media Dordr Ger 811:235–254. ISBN: 978-94-017-8739-0

  • Porter AE et al (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41(8):3012–3017. https://doi.org/10.1021/es062541f

    Article  CAS  Google Scholar 

  • Radic S (2015) Biophysical interaction between nanoparticles and biomolecules. All dissertations paper 1517. link:tigerprints.clemson.edu/all_dissertations/1517

  • Radoslav S et al (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300(5619):615–618. https://doi.org/10.1126/science.1078192

    Article  CAS  Google Scholar 

  • Raghunathan VK, Devey M, Hawkins S et al (2013) Influence of particle size and reactive oxygen species on cobalt chrome NP-mediated genotoxicity. Biomaterials 34:3559e3570. https://doi.org/10.1016/j.biomaterials.2013.01.085

    Article  CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Ind J Exp Biol 41:935–944. http://nopr.niscair.res.in/handle/123456789/17153

  • Ramachandran G, Ostraat M, Evans DE, Methner MM, O’Shaughnessy P, D’Arcy J, Geraci CL, Stevenson E, Maynard A, Rickabaugh K (2011) A strategy for assessing workplace exposures to nanomaterials. J Occup Environ Hyg 8:673–685. https://doi.org/10.1080/15459624.2011.623223

    Article  Google Scholar 

  • Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. ISBN: 0 85403 604 0

  • Ryman-Rasmussen JP et al (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91(1):159–165. https://doi.org/10.1093/toxsci/kfj122

    Article  CAS  Google Scholar 

  • Sadiq IM, Swayamprava D, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5):1180–1187. https://doi.org/10.1016/j.ecoenv.2011.03.006

    Article  CAS  Google Scholar 

  • Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater. https://doi.org/10.1155/2015/136765

    Google Scholar 

  • Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6):2461–2464. https://doi.org/10.1039/c1nr10172b

    Article  CAS  Google Scholar 

  • Saunders AM, Larsen P, Nielsen PH (2013) Comparison of nutrient-removing microbial communities in activated sludge from full-scale MBRs and conventional plants. Water Sci Technol 68(2):366. https://doi.org/10.2166/wst.2013.183

    Article  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185. https://doi.org/10.1093/toxsci/kfj197

    Article  CAS  Google Scholar 

  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9(4):495–509. https://doi.org/10.1039/b9pp00180h

    Article  CAS  Google Scholar 

  • Seabra AB, Duran N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5(2):934–975. https://doi.org/10.3390/met5020934

    Article  CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5. https://doi.org/10.1186/1477-3155-12-5

    Article  CAS  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852e870. https://doi.org/10.1007/s10495-012-0705-6

    Article  CAS  Google Scholar 

  • Shenava A, Sharma M, Shetty V, Shenoy S (2015) Silver nanoparticles: a boon in clinical medicine. J Oral Res Rev 7(1):35–38. http://www.jorr.org/text.asp?2015/7/1/35/160194

  • Siddiqui MA, Ahamed M, Ahmad J et al (2012) Nickel oxide nanoparticles induce cytotoxicity, oxidative stress, and apoptosis in cultured human cells that are abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50:641e647. https://doi.org/10.1016/j.fct.2012.01.017

    Article  CAS  Google Scholar 

  • Silvestre C, Duraccio D, Sossio C (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003

    Article  CAS  Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assesment for atmospheric ultrafine particles and implications in epidemiologic research. Environ Health Perspect 113(8):947–955. https://doi.org/10.1289/ehp.7939

    Article  Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22. https://doi.org/10.1186/1743-8977-7-22

    Article  CAS  Google Scholar 

  • Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int. https://doi.org/10.1155/2015/893049

    Google Scholar 

  • Song L, Connolly M, Fernandez-Cruz ML, Vijver MG, Fernandez M, Conde E, de Snoo GR, Peijnenburg WJ, Navas JM (2014) Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 8(4):383–393. https://doi.org/10.3109/17435390.2013.790997

    Article  CAS  Google Scholar 

  • Stampfl A, Maier M, Radykewicz R, Reitmeir P, Gottlicher M, Niessner R (2011) Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS Nano 5(7):5345–5353. https://doi.org/10.1021/nn200801c

    Article  CAS  Google Scholar 

  • Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, Nesslany F, Silva MJ (2014) Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 28(1):60–69. https://doi.org/10.1016/j.tiv.2013.06.009

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO nanoparticles for physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156. http://www.ncbi.nlm.nih.gov/pubmed/17051814

  • Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111(9):1202–1218. https://doi.org/10.1289/ehp.5999

    Article  CAS  Google Scholar 

  • Tran DT, Salmon R (2010) Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. Australas J Dermatol 52:1–6. https://doi.org/10.1039/B208346A

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. https://doi.org/10.3762/bjnano.6.181

    Article  CAS  Google Scholar 

  • Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles—a review. J Miner Mater Charact Eng 9(5):455–459. https://doi.org/10.4236/jmmce.2010.95031

    Google Scholar 

  • Von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, Horne N, Unrine JM (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31(1):32–49. https://doi.org/10.1002/etc.723

    Article  CAS  Google Scholar 

  • Warheit D, Hoke R, Finlay C, Donner E, Reed K, Sayes C (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110. https://doi.org/10.1016/j.toxlet.2007.04.008

    Article  CAS  Google Scholar 

  • Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA, Tanguay RL (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715. https://doi.org/10.1016/j.toxrep.2015.03.015

    Article  CAS  Google Scholar 

  • Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M (2011) Nanoparticles: small and mighty. Int J Dermatol 50:247–254. https://doi.org/10.1111/j.1365-4632.2010.04815.x

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121e2134. https://doi.org/10.1021/nn800511k

    Google Scholar 

  • Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS ONE 8(8):e70618. https://doi.org/10.1371/journal.pone.0070618

    Article  CAS  Google Scholar 

  • Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK et al (2012) Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated fas upregulation and bax activation. Int J Nanomed 7:1203e1214. https://doi.org/10.2147/IJN.S28647

    Google Scholar 

  • Yu L, Xi J (2012) CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cells. Int J Hydrog Energy 37(21):15938–15947. https://doi.org/10.1016/j.ijhydene.2012.08.063

    Article  CAS  Google Scholar 

  • Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K (2015) Toxicity of silver nanoparticles to a fish gill cell line: the role of medium composition. Nanotoxicology 9(1):54–63. https://doi.org/10.3109/17435390.2014.889236

    Article  CAS  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215. https://doi.org/10.1016/j.chemosphere.2009.11.013

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4