A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10311-016-0583-1 below:

Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation

  • Akyil D, Eren Y, Konuk M et al (2015) Determination of mutagenicity and genotoxicity of indium tin oxide nanoparticle using the Ames test and micronucleus assay. Toxicol Ind Health. doi:10.1177/0748233715579804

    Google Scholar 

  • Arakha M, Pal S, Samantarrai D et al (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813. doi:10.1038/srep14813

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R et al (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31:11605–11612. doi:10.1021/acs.langmuir.5b03081

    Article  CAS  Google Scholar 

  • Beevers C, Adamson RH (2016) Evaluation of 4-methylimidazole, in the Ames/Salmonella test using induced rodent liver and lung S9. Environ Mol Mutagen 57:51–57

    Article  CAS  Google Scholar 

  • Das B, Dash SK, Mandal D et al (2015) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem. doi:10.1016/j.arabjc.2015.08.008

    Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D et al (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. doi:10.1016/j.foodres.2015.01.005

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Patra D et al (2016a) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111. doi:10.1016/j.cbi.2016.05.018

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B et al (2016b) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23:4149–4163

    Article  CAS  Google Scholar 

  • Deokar AR, Lin L-Y, Chang C-C, Ling Y-C (2013) Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study. J Mater Chem B 1:2639–2646. doi:10.1039/C3TB20188K

    Article  CAS  Google Scholar 

  • Dwivedi S, Wahab R, Khan F et al (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9:e111289

    Article  Google Scholar 

  • Hansen U, Thünemann AF (2015) Characterization of silver nanoparticles in cell culture medium containing fetal bovine serum. Langmuir 31:6842–6852. doi:10.1021/acs.langmuir.5b00687

    Article  CAS  Google Scholar 

  • Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716. doi:10.1007/s00216-010-3962-7

    Article  CAS  Google Scholar 

  • Jain A, Atale N, Kohli S et al (2015) An assessment of norepinephrine mediated hypertrophy to apoptosis transition in cardiac cells: a signal for cell death. Chem Biol Interact 225:54–62. doi:10.1016/j.cbi.2014.11.017

    Article  CAS  Google Scholar 

  • Kim HR, Kim MJ, Lee SY et al (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 726:129–135. doi:10.1016/j.mrgentox.2011.08.008

    Article  CAS  Google Scholar 

  • Kim HR, Park YJ, Shin DY et al (2013) Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environ Health Toxicol 28:e2013003. doi:10.5620/eht.2013.28.e2013003

    Article  Google Scholar 

  • Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Toxicity and carcinogenicity of potassium bromate: a new renal carcinogen. Environ Health Perspect 87:309–335

    CAS  Google Scholar 

  • Landsiedel R, Kapp MD, Schulz M et al (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutat Res Rev Mutat Res 681:241–258. doi:10.1016/j.mrrev.2008.10.002

    Article  CAS  Google Scholar 

  • Li Y, Chen DH, Yan J et al (2012) Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res Genet Toxicol Environ Mutagenes 745:4–10. doi:10.1016/j.mrgentox.2011.11.010

    Article  CAS  Google Scholar 

  • Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 5:11033. doi:10.1038/srep11033

    Article  CAS  Google Scholar 

  • Llana-ruiz-cabello M, Maisanaba S, Puerto M et al (2014) Evaluation of the mutagenicity and genotoxic potential of carvacrol and thymol using the Ames Salmonella test and alkaline, Endo III- and FPG-modified comet assays with the human cell line Caco-2. Food Chem Toxicol 72:122–128. doi:10.1016/j.fct.2014.07.013

    Article  CAS  Google Scholar 

  • Maenosono S, Suzuki T, Saita S (2007) Mutagenicity of water-soluble FePt nanoparticles in Ames test. J Toxicol Sci 32:575–579

    Article  CAS  Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res Environ Mutagenes Relat Subj 113:173–215. doi:10.1016/0165-1161(83)90010-9

    Article  CAS  Google Scholar 

  • Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299. doi:10.1039/C4RA12163E

    Article  CAS  Google Scholar 

  • Nandita D, Ranjan S, Mundra S et al (2016) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19:700–708. doi:10.1080/10942912.2015.1042587

    Article  Google Scholar 

  • Padmos JD, Boudreau R, Weaver DF, Zhang P (2015) The impact of protecting ligands on the surface structure and antibacterial activity of silver nanoparticles. Langmuir 31:3745–3752. doi:10.1021/acs.langmuir.5b00049

    Article  CAS  Google Scholar 

  • Priester JH, Singhal A, Wu B et al (2014) Integrated approach to evaluating the toxicity of novel cysteine-capped silver nanoparticles to Escherichia coli and Pseudomonas aeruginosa. Analyst 139:954–963. doi:10.1039/c3an01648j

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chinnappan S et al (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-015-0673-z

    Google Scholar 

  • Wang D, Zhang W, Wang T et al (2015a) Unveiling the mode of action of two antibacterial tanshinone derivatives. Int J Mol Sci 16:17668–17681. doi:10.3390/ijms160817668

    Article  CAS  Google Scholar 

  • Wang R, Peng L, Zhao J et al (2015b) Gardenamide A protects RGC-5 cells from h2o2-induced oxidative stress insults by activating PI3 K/Akt/eNOS signaling pathway. Int J Mol Sci 16:22350–22367

    Article  CAS  Google Scholar 

  • Xing K, Chen XG, Kong M et al (2009) Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym 76:17–22. doi:10.1016/j.carbpol.2008.09.016

    Article  CAS  Google Scholar 

  • Yoshida R, Kitamura D, Maenosono S (2009) Mutagenicity of water-soluble ZnO nanoparticles in Ames test. J Toxicol Sci 34:119–122

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4