A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10311-009-0268-0 below:

Field crops for phytoremediation of metal-contaminated land. A review

  • Abbott DE, Essington ME, Mullen MD, Ammons JT (2001) Fly ash and lime-stabilized biosolid mixtures in mine spoil reclamation. Simulated weathering. J Environ Qual 30:608–616

    CAS  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Google Scholar 

  • Adriano DC (1992) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton

    Google Scholar 

  • Adriano DC (2001) Trace elements in the terrestrial environments. Biogeochemistry, bioavailability, and risks of heavy metals, 2nd edn. Springer, New York

    Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Alloway BJ (1990) Soil processes and behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 7–28

    Google Scholar 

  • Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74:1292–1300

    Article  CAS  Google Scholar 

  • Álvarez E, Fernández Marcos ML, Vaamonde C, Fernández-Sanjurjo MJ (2003) Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci Total Environ 313:185–197

    Article  CAS  Google Scholar 

  • Anderson TA, Coats JR (1995) An overview of microbial degradation in the rhizosphere and its implications for bioremediation. In: Skipper HD, Turco RF (eds) Bioremediation, science and applications. SSSA, ASA, and CSS, Madison, pp 135–143

    Google Scholar 

  • Angelova V, Ivanov K (2009) Bio-accumulation and distribution of heavy metals in black mustard (Brassica nigra Koch). Environ Monit Assess 153:449–459

    Article  CAS  Google Scholar 

  • Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soils from a metallurgical site. Sci Total Environ 319:13–25

    Article  CAS  Google Scholar 

  • Arshad J (2007) Allelopathic interactions in mycorrhizal associations. Allelopathy J 20:9–42

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw A (ed) Heavy metal tolerance in plants—Evolutionary aspects. CRC Press, Boca Raton, Florida, pp 155–178

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycling 1:41–49

    Article  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publ, Boca Raton, pp 85–107

    Google Scholar 

  • Bandiera M, Mosca G, Vamerali T (2009a) Effectiveness of roots in preventing metal leaching in EDDS-assisted phytoextraction with Brassica carinata A. Braun. and Raphanus sativus L. var. oleiformis. In: Proceedings of 7th ISRR symposium “root research and applications” (RootRAP), Boku, Vienna, 2–4 Sept 2009, pp 1–4

  • Bandiera M, Mosca G, Vamerali T (2009b) Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var oleiformis Pers.) in metal-polluted wastes. Desalination 247:79–92

    Google Scholar 

  • Barceló J, Vázquez MD, Mádico J, Poschenrieder C (1994) Hyperaccumulation of zinc and cadmium in Thlaspi caerulescens. In: Varnavas SP (ed) Environmental contamination. CEP Consultants Ltd., Edinburgh, pp 132–134

    Google Scholar 

  • Basta NT, Gradwohl R, Snethen KL, Schroder JL (2001) Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J Environ Qual 30:1222–1230

    Article  CAS  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil. Key concepts and metal bioavailability. J Environ Qual 34:49–63

    CAS  Google Scholar 

  • Baum C, Hrynkiewicz K, Lienweber P, Meiβner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). Plant Nutr Soil Sci 169:516–522

    Article  CAS  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bianchi V, Masciandaro G, Giraldi D, Ceccanti B, Iannelli R (2008) Enhanced heavy metal phytoextraction from marine dredged sediments comparing conventional chelating agents (citric acid and EDTA) with humic substances. Water Air Soil Pollut 193:323–333

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Boyd RS, Jaffré T, Odom JW (1999) Variation of nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410

    Article  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Brown SL, Henry CH, Chaney R, Compton H, Volder PSD (2003) Using municipal biosolids in combination with other residuals to restore metal-contaminated areas. Plant Soil 249:203–215

    Article  CAS  Google Scholar 

  • Brown SL, Sprenger M, Maxemchuk A, Compton H (2005) Ecosystem function in alluvial tailings after biosolids and lime application. J Environ Qual 34:1–6

    Google Scholar 

  • Brunnert H, Zadrazil F (1985) The influence of zinc on the translocation of cadmium and mercury in the fungus Agrocybe aegerita (a model system). Angew Bot 59:469–477

    CAS  Google Scholar 

  • Bucheli-Witschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25:69–106

    Article  CAS  Google Scholar 

  • Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189

    Article  CAS  Google Scholar 

  • Campbell BD, Grime JP (1989) A new method of exposing developing root systems to controlled patchiness in mineral nutrient supply. Ann Bot 63:395–400

    Google Scholar 

  • Cataldo DA, Wildung RE (1978) Soil and plant factors influencing the accumulation of heavy metals by plants. Environ Health Perspect 27:149–159

    Article  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants: II. Distribution and chemical form in soybean plants. Plant Physiol 62:566–570

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–811

    Article  CAS  Google Scholar 

  • Chen YH, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196

    Article  CAS  Google Scholar 

  • Cieśliński G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117

    Article  Google Scholar 

  • Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Inc., New York, pp 483–510

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Clemente R, Walker DJ, Berna MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    Article  CAS  Google Scholar 

  • Cobbet CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  Google Scholar 

  • Colpaert JV, Van Assche JA (1992) The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil 145:237–243

    Article  CAS  Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • Delfine S, Tognetti R, Desiderio E, Alvino A (2005) Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron Sustain Dev 25:183–191

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  CAS  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  Google Scholar 

  • Dorlhac de Borne F, Elmayan T, De Roton C, De Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Molecul Breeding 4:83–90

    Article  Google Scholar 

  • Duffus JH (2002) “Heavy metals”—A meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D, Raskin I (2002) Bioengineering of a phytoremediation plant by means of somatic hybridization. Int J Phytorem 4:117–126

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated site. J Environ Qual 26:1424–1430

    Article  CAS  Google Scholar 

  • EEA (2003) Soil degradation. In: Europe’s environment: the third assessment. Environmental assessment report N. 10. EEA, Copenhagen, pp 198–212

  • EEA (2007) Progress in management of contaminated sites (CSI 015)—May 2007 assessment. European environment agency. http://themes.eea.europa.eu/IMS/IMS/ISpecs/ISpecification20041007131746/IAssessment1152619898983/view_content. Accessed 01 July 2009

  • EEA-UNEP (2000) Down to earth: soil degradation and sustainable development in Europe. A challenge for the 21st century. Environmental Issues Series N. 6. EEA, UNEP, Luxembourg

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    Article  CAS  Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J. Plant Nutr 15:763–782

    Article  Google Scholar 

  • Ensley BD, Blaylock MJ, Dushenkov S, Nanda-Kumar PBA, Kapulnik Y (1999) Inducing hyperaccumulation of metals in plant shoots. US Patent 5,917,117, 29 June

  • Evangelou MWH, Dagan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207–213

    Article  CAS  Google Scholar 

  • Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 31:207–214

    Article  Google Scholar 

  • Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389

    Article  Google Scholar 

  • Förstner U (1995) Land contamination by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) Metal speciation and contamination of soil. CRC Press, Boca Raton, pp 1–33

    Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  Google Scholar 

  • Gao Y, He J, Ling W, Hu H, Liu F (2003) Effects of organic acids on copper and cadmium desorpion from contaminated soils. Environ Int 29:613–618

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Min Proc Einviron Protect 3:229–236

    Google Scholar 

  • Gaweda M, Capecka E (1995) Effect of substrate pH on the accumulation of lead in radish (Raphanus sativus L. subvar. radicula) and spinach (Spinacia oleracea L.). Acta Physiol Plant 17:333–340

    CAS  Google Scholar 

  • Giasson P, Jaouich A, Gagné S, Moutoglis P (2005) Arbuscular mycorrhizal fungi involvement in zinc and cadmium speciation change and phytoaccumulation. Remediat J 15:75–81

    Article  Google Scholar 

  • Grčman H, Velikonja-Bolta Š, Vodnic D, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Article  Google Scholar 

  • Grčman H, Vodnic D, Velikonja-Bolta Š, Leštan D (2003) Ethylenediamine disuccinate as a new chelate for environmentally safe enhanced lead phytoremediation. J Environ Qual 32:500–506

    Article  Google Scholar 

  • Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W, Han L, Cong L (2008) Gene manipulation of a heavy metal hyperaccumulator species Thlaspi caerulescens L. via Agrobacterium-mediated transformation. Mol Biotechnol 40:77–86

    Article  CAS  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  CAS  Google Scholar 

  • Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275

    Article  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  Google Scholar 

  • Han YY, Zhang WZ, Zhang BL, Zhang SS, Wang W, Ming F (2009) One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco. Mol Biotechnol 42:299–305

    Article  CAS  Google Scholar 

  • Hartley J, Caimey JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Clemente R, French C, Piearce TG, Sparke S, Lepp NW (2009) Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK). Environ Pollut 157:847–856

    Article  CAS  Google Scholar 

  • Haussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in Norway Spruce (Picea abies (L) Karst). J. Plant Physiol 133:486–491

    Google Scholar 

  • Haynes RJ (1980) Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants. Bot Rev 46:75–99

    Article  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  CAS  Google Scholar 

  • Hofrichter M, Steinbüchel A (2001) Biopolymers, Vol. 1. Lignin, humic substances and coal. Wiley Europe-VCH, Weinheim

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  CAS  Google Scholar 

  • Jaworska JS, Schowanek D, Feijtel TCJ (1999) Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38:3597–3625

    Article  CAS  Google Scholar 

  • Kanazawa K, Higuchi K, Nishizawa NK, Fushiya S, Chino M, Mori S (1994) Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretion under Fe-deficient conditions in Gramineae. J Exp Bot 45:1903–1906

    Article  CAS  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix H, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  CAS  Google Scholar 

  • King RF, Royle A, Putwain PD, Dickinson NM (2006) Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environ Pollut 143:318–326

    Article  CAS  Google Scholar 

  • Kos B, Leštan D (2004) Chelator induced phytoextraction and in situ washing of Cu. Environ Pollut 132:333–339

    Article  CAS  Google Scholar 

  • Krishnamurti GSR, Cielinski G, Huang PM, van Rees KCJ (1997) Kinetics of cadmium release from soils as influenced by organic acid: implementation in cadmium availability. J Environ Qual 26:271–277

    Article  CAS  Google Scholar 

  • Kulli B, Balmer M, Krebs R, Lothenbach B, Geiger G, Schulin R (1999) The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J Environ Qual 28:1699–1705

    Article  CAS  Google Scholar 

  • Lagier T, Feuillade G, Matejka G (2000) Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie 20:537–546

    Article  Google Scholar 

  • Larsen PB, Degenhardt J, Tai CY, Stenzler LM, Howell SH, Kochian LV (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:19–27

    Article  Google Scholar 

  • Lasat MM (2002) Phytoremediation of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    Article  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB, Paulsen GM (2006) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 27:695–704

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61:595–598

    Article  CAS  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  Google Scholar 

  • Luo C, Shen Z, Luo L, Li X (2006) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut 144:862–871

    Article  CAS  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2008) Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Pollut 188:127–137

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • MacCarthy P (2001) The principles of humic substances. Soil Sci 166:738–751

    Article  CAS  Google Scholar 

  • Macek T, Macková M, Pavlíková D, Száková J, Truksa M, Singh-Cundy A, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    Article  CAS  Google Scholar 

  • Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158:345–356

    Article  CAS  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    Article  CAS  Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH Jr (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation. Wiley, Hoboken

    Book  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 261–287

    Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wirén N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773

    Article  CAS  Google Scholar 

  • Meers E, Hopgood M, Lesge E, Vervake P, Tack FMG, Verloo MG (2004) Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytoremediat 6:95–109

    Article  CAS  Google Scholar 

  • Meeuseen JCL, Keizer MG, Reimsdijk WH, Haan FAM (1994) Solubility of cyanide in contaminated soil. J Environ Qual 23:785–792

    Article  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Mellem JJ, Baijnath H, Odhav B (2009) Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J Environ Sci Heal A 44:568–575

    Article  CAS  Google Scholar 

  • Mench M, Bussière S, Boisson J, Castaing E, Vangronsveld J, Ruttens A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol 166:445–454

    Article  CAS  Google Scholar 

  • Mosca G, Vamerali T, Ganis A, Coletto L, Bona S (2004) Miglioramento dell’efficienza agronomica della fitodecontaminazione di metalli pesanti. In: Zerbi G, Marchiol L (eds) Fitoestrazione Di Metalli Pesanti—Contenimento Del Rischio Ambientale E Relazioni Suolo-Mirorganismi-Pianta. Forum Editrice Universitaria Udinese, Udine, pp 105–135

    Google Scholar 

  • Murakami M, Ae N (2009) Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). J Hazard Mater 162:1185–1192

    Article  CAS  Google Scholar 

  • Nanda-Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Navari-Izzo F, Quartacci MF (2001) Phytoremediation of metals. Tolerance mechanisms against oxidative stress. Minerva Biotec 13:73–83

    Google Scholar 

  • Neunhäuserer C, Berreck M, Insam H (2001) Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut 128:85–96

    Article  Google Scholar 

  • Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress. Plant Biol 9:672–681

    Article  CAS  Google Scholar 

  • Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50:513–517

    CAS  Google Scholar 

  • Pellet MD, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminium tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Pirbazari M, Badriyha BN, Ravindran V, Kim S (1989) Treatment of landfill leachate by biologically active carbon adsorbers. In: Bell JM (ed) Proceedings of 44th annual Purdue conference on industrial wastes. Lewis Publishers, Chelsea, pp 555–563

    Google Scholar 

  • Pizzeghello D, Nicolini G, Nardi S (2000) Hormone-like activities of humic substances in different forest ecosystems. New Phytol 155:393–402

    Article  Google Scholar 

  • Prasad MNV, De Oliveira-Freitas HM (2003) Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electr J Biotech 6:285–321

    Google Scholar 

  • Probst A, Liu H, Fanjul M, Liao B, Hollande E (2009) Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308

    Article  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Meneguzzo S, Sgherri C, Navari-Izzo F (2003) Uptake and translocation of copper in Brassicaceae. J Plant Nutr 26:1065–1083

    Article  CAS  Google Scholar 

  • Quartacci MF, Baker AJM, Navari-Izzo F (2005) Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 59:1249–1255

    Article  CAS  Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    Article  CAS  Google Scholar 

  • Quartacci MF, Irtelli B, Baker AJM, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68:1920–1928

    Article  CAS  Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166

    Article  CAS  Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–230

    Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediat 10:440–454

    Article  CAS  Google Scholar 

  • Rizzi L, Petruzelli G, Poggio G, Vigna Guidi G (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  • Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, DeDominicis V (1997b) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  • Robinson BH, Meblanc L, Petit D, Broks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS (2006) Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ Pollut 144:11–18

    Article  CAS  Google Scholar 

  • Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 231–246

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sappin-Didier V, Vansuyts G, Mench M, Briat JF (2005) Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant Soil 270:189–197

    Article  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, Larson RJ (1997) Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere 34:2375–2391

    Article  CAS  Google Scholar 

  • Schwartz C, Morel JL, Saumier S, Whiting SN, Baker AJM (1999) Root development of the zinc hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localisation in soil. Plant Soil 208:103–115

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  Google Scholar 

  • Soriano AM, Fereres E (2003) Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant Soil 256:253–264

    Article  Google Scholar 

  • Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120

    Article  CAS  Google Scholar 

  • Suthersan SS (1997) Remediation engineering: design concepts. CRC Press/Lewis Publishers, Boca Raton

    Google Scholar 

  • Sutton P, Dick WA (1987) Reclamation of acidic mined lands in humid areas. Adv Agron 41:377–406

    Article  CAS  Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944

    Article  CAS  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758

    Article  CAS  Google Scholar 

  • Tanton TW, Crowdy SH (1971) The distribution of lead chelate in the transpirational stream of higher plants. Pestic Sci 2:211–213

    Article  CAS  Google Scholar 

  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73

    Article  CAS  Google Scholar 

  • Taub DR, Goldberg D (1996) Root system topology of plants from habitats differing in soil resource availability. Funct Ecol 10:258–264

    Article  Google Scholar 

  • Terry N, Bañuelos GS (2000) Phytoremediation of contaminated soil and water. CRC Press, Lewis Publ, Boca Raton

    Google Scholar 

  • The Conservation Foundation (1987) State of the environment: a view toward the nineties. The Conservation Foundation, Washington, DC

    Google Scholar 

  • Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30:389–394

    CAS  Google Scholar 

  • Tode K, Hartwig L (2001) Fusicoccin- and IAA-induced elongation growth share the same pattern of K+ dependence. J Exp Bot 52:251–255

    Article  CAS  Google Scholar 

  • Tomsett AB, Sewell AK, Jones SJ, Miranda JR, de Thurman DA (1992) Metal-binding proteins and metal-regulated gene expression in higher plants. In: Wray JL (ed) Inducible plant proteins: their biochemistry and molecular biology. Cambridge University Press, Cambridge, pp 1–24

    Google Scholar 

  • Trewavas AJ (2000) Signal perception and transduction. In: Buchannan B, Gruisem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, USA, pp 930–988

    Google Scholar 

  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894

    Article  CAS  Google Scholar 

  • Van der Lelie D, Schwitzgübel JP, Glass DJ, Vangronsveld J, Baker AJM (2001) Assessing phytoremediation progress in the United States and Europe. Environ Sci Technol 35:446–452

    Article  Google Scholar 

  • Vandevivere P, Saveyn H, Verstraete W, Feijtel TCJ, Schowanek D (2001) Biodegradation of metal-[S,S]-EDDS complexes. Environ Sci Technol 35:1765–1770

    Article  CAS  Google Scholar 

  • Vangronsveld J, Assche FV, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    Article  CAS  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan V (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461

    Article  CAS  Google Scholar 

  • Wallace A, Mueller RT, Wood RA (1980) Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture. J Plant Nutr 2:111–113

    Article  CAS  Google Scholar 

  • Wang QR, Liu XM, Cui YS, Dong YT, Christie P (2002) Response of legume and non-legume crop species to heavy metals in soils with multiple metal contamination. J Environ Sci Health 37:611–621

    Article  CAS  Google Scholar 

  • Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    Article  CAS  Google Scholar 

  • Ward TE (1986) Aerobic and anaerobic biodegradation of nitrilotriacetate in subsurface soils. Ecotox Environ Safe 11:112–125

    Article  CAS  Google Scholar 

  • Wenger K, Gupta SK, Furrer G, Schulin R (2003) The role of nitrilotriacetate in copper uptake by tobacco. J Environ Qual 32:1669–1676

    Article  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive response to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210

    Article  CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of degraded soils with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50:819–822

    Article  CAS  Google Scholar 

  • Wu LH, Sun XF, Luo YM, Xing XR, Christie P (2007) Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil. Int J Phytorem 9:227–241

    Article  CAS  Google Scholar 

  • Ye ZH, Wong JWC, Wong MH, Lan CY, Baker AJM (1999) Lime and pig manure as ameliorants for revegetating lead/zinc mine tailings: a greenhouse study. Bioresour Technol 69:35–43

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou O (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4