A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s10295-003-0049-x below:

Hemicellulose bioconversion | Journal of Industrial Microbiology & Biotechnology

  • Aspinall GO (1980) Chemistry of cell wall polysaccharides. In: Preiss J (ed) The biochemistry of plants (a comprehensive treatise), vol 3. Carbohydrates: structure and function. Academic Press, New York, pp 473–500

  • Bachmann SL, McCarthy AJ (1991) Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl Environ Microbiol 57:2121–2130

    CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Ploger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Bioresour Technol 49:568–577

    Article  CAS  Google Scholar 

  • Bothast RJ, Saha BC (1997) Ethanol production from agricultural biomass substrates. Adv Appl Microbiol 44:261–286

    CAS  Google Scholar 

  • Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation ofl-arabinose, d-xylose and d-glucose by ethanologenic Escherichia coli. Biotechnol Lett 16:401–406

    CAS  Google Scholar 

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentation with new recombinant organisms. Biotechnol Prog 15:867–875

    Article  CAS  PubMed  Google Scholar 

  • Brownell HH, Saddler JN (1984) Steam explosion pretreatment for enzymatic hydrolysis. Biotechnol Bioeng Symp 14:55–68

    CAS  Google Scholar 

  • Bungay H (1992) Product opportunities for biomass refining. Enzyme Microb Technol 14:501–507

    Article  CAS  Google Scholar 

  • Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, Tsao GT (1996) Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett 18:1013–1018

    CAS  Google Scholar 

  • Carvalho W, Silva SS, Converti A, Vitolo M (2002) Metabolic behavior of immobilized Candida guilliermondi cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79:165–169

    Article  CAS  PubMed  Google Scholar 

  • Chen LF, Gong CS (1985) Fermentation of sugarcane bagasse hemicellulose hydrolyzate to xylitol by a hydrolyzate-acclimatized yeast. J Food Sci 50:226–228

    CAS  Google Scholar 

  • Chiang C, Knight SG (1960) Xylose metabolism by cell-free extract of Penicillium chrysosporium. Nature 188:79–81

    CAS  Google Scholar 

  • Choi JH, Moon KH, Ryu YW, Seo JH (2000) Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnol Lett 22:1625–1628

    Article  CAS  Google Scholar 

  • Christov LP, Myburgh J, van Tonder A, Prior BA (1997) Hydrolysis of extracted and fiber-bound xylan with Aureobasidium pullulans enzymes. J Biotechnol 55:21–29

    Article  CAS  Google Scholar 

  • Chum HL, Johnsoon DK, Black S (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: 1, enzyme hydrolysis of cellulosic residues. Biotechnol Bioeng 31: 643–649

    CAS  Google Scholar 

  • Chung YS, Kim MD, Lee WJ, Ryu YW, Kim JH, Seo JH (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 30:809–816

    Article  CAS  Google Scholar 

  • Clark DP, Mackie KL (1987) Steam explosion of the softwood Pinus radiata with sulphur dioxide addition. 1. Process optimization. J Wood Chem Technol 7:373–403

    CAS  Google Scholar 

  • Converti A, Perego P, Dominguez JM (1999) Xylitol production from hardwood hemicellulose hydrolyzates by Pachysolen tannophilus, Debaryomyces hansenii, and Candida guillermondii. Appl Biochem Biotechnol 82:141–151

    CAS  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) β-1,4-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    CAS  PubMed  Google Scholar 

  • Cruz JM, Dominquez JM, Parajo JC (2000) Xylitol production from barley bran hydrolyzates by continuous fermentation with Debaryomyces hansenii. Biotechnol Lett 22:1895–1898

    Article  CAS  Google Scholar 

  • Dale BE, Moreira MJ (1982) A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43

    CAS  Google Scholar 

  • Dale BE, Leong CK, Pham TK, Esquivel VM, Rios L, Latimer VM (1996) Hydrolysis at low enzyme levels: application of the AFEX process. Bioresour Technol 56:111–116

    Article  CAS  Google Scholar 

  • Deng XX, Ho NWY (1990) Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24/25:193–199

    Google Scholar 

  • Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening forl-arabinose fermenting yeasts. Appl Biochem Biotechnol 57/58:233–242

    Google Scholar 

  • Dien BS, Hespell RB, Ingram LO, Bothast RJ (1997) Conversion of corn milling fibrous coproducts into ethanol by recombinant Escherichia coli strains K011 and SL 40. World J Microbiol Biotechnol 13:619–625

    CAS  Google Scholar 

  • Dien BS, Iten LB, Bothast RJ (1999) Conversion of corn fiber to ethanol by recombinant E. coli. J Ind Microbiol Biotechnol 22:575–581

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Nichols NN, O'Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196

    Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of l-lactic acid from hexose and pentose sugars. J Ind Microbiol Biotechnol 27:259–264

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of l-lactic acid. J Ind Microbiol Biotechnol 29:221–227

    CAS  PubMed  Google Scholar 

  • Dominguez JM, Gong CS, Tsao GT (1996) Pretreatment of sugar cane bagasse hemicellulose hydrolyzate for xylitol production by yeast. Appl Biochem Biotechnol 57/58:49–56

    Google Scholar 

  • Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181

    CAS  Google Scholar 

  • Draude KM, Kurniawan CB, Duff SJB (2001) Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour Technol 79:113–120

    Article  CAS  PubMed  Google Scholar 

  • Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  CAS  Google Scholar 

  • Du Preez JC (1994) Process parameters and environmental factors affectingd-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–956

    Article  Google Scholar 

  • Eda S, Ohnishi A, Kato K (1976) Xylan isolated from the stalk of Nicotiana tabacum. Agric Biol Chem 40:359–364

    CAS  Google Scholar 

  • Eklund R, Zacchi G (1995) Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme Microb Technol 17:255–259

    Article  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahborn CF, Hahn-Hagerdahl B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae harbouring XYL1, XYL2 and XKS1 in mineral media chemostat cultivations. Appl Environ Microbiol 66:3381–3386

    CAS  PubMed  Google Scholar 

  • Faulds CB, Bartolome B, Williamson G (1997) Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Ind Crops Prod 6:367–374

    Article  CAS  Google Scholar 

  • Faveri DD, Perego P, Converti A, Borghi M. (2002) Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chem Eng J 90:291–298

    Article  Google Scholar 

  • Fernandez-Bolanos J, Felizon B, Heredia A, Rodriguez R, Guillen R, Jimenez A (2001) Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour Technol 79:53–61

    Article  CAS  PubMed  Google Scholar 

  • Filho EXF, Touhy MG, Pulls J, Coughlan MP (1991) The xylan-degrading enzyme systems of Penicillium capsulatum and Talaromyces emersonii. Biochem Soc Trans 19:25S

    CAS  PubMed  Google Scholar 

  • Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol. Bioresour Technol 51:103–109

    Article  CAS  Google Scholar 

  • Garrote G, Dominguez H, Parajo JC (2001) Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics. Bioresour Technol 79:155–164

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194

    CAS  Google Scholar 

  • Goldstein IS, Easter JM (1992) An improved process for converting cellulose to ethanol. Tappi 75:135–140

    CAS  Google Scholar 

  • Gong CS, Chen LF, Flickinger MC, Chiang LC, Tsao GT (1981) Production of ethanol fromd-xylose by using d-xylose isomerase and yeasts. Appl Environ Microbiol 41:430–436

    CAS  Google Scholar 

  • Gong CS, Cao N, Tsao GT (1997) Biological production of 2,3-butanediol from renewable biomass. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, D.C., pp 280–293

  • Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26:46–52

    CAS  Google Scholar 

  • Govinden R, Pillay B, van Zyl WH, Pillay D (2001) Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehate XYL1 genes. Appl Microbiol Biotechnol 55:76–80

    Article  CAS  PubMed  Google Scholar 

  • Granstorm T, Ojama H, Leisola M (2001) Chemostat study of xylitol production by Candida guilliermondii. Appl Microbiol Biotechnol 55:36–42

    PubMed  Google Scholar 

  • Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water-extractable arabinoxylans. J Cereal Sci 16:53–67

    CAS  Google Scholar 

  • Gurgel PV, Manchilha IM, Pecanha RP, Siqueira JFM (1995) Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresour Technol 52:219–223

    Article  CAS  Google Scholar 

  • Hahn-Hagerdal B, Berner S, Skoog K (1986) Improved ethanol production from xylose with glucose isomerase and Saccharomyces cerevisiae using respiratory inhibitor azide. Appl Microbiol Biotechnol 24:287–293

    Google Scholar 

  • Hahn-Hagerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16:933–943

    Article  Google Scholar 

  • Hahn-Hagerdal B, Wahlborm CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    PubMed  Google Scholar 

  • Hallborn J, Walfridsson M, Airaksine U, Ojamo H, Hahn-Hagerdal B (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1095

    CAS  PubMed  Google Scholar 

  • Hallborn J, Gorwa MF, Meinander N, Penttila M, Keranen S, Hahn-Hagerdal B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol 42:326–333

    CAS  PubMed  Google Scholar 

  • Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1856

    CAS  PubMed  Google Scholar 

  • Hofer M, Betz A, Kotyk A (1971) Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. IV. Induction of an enzyme necessary for d-xylose catabolism. Biochim Biophys Acta 252:1–12

    CAS  PubMed  Google Scholar 

  • Hood EE, Hood KR, Fritz SE (1991) Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize. Plant Sci 79:13–22

    Article  CAS  Google Scholar 

  • Ingram LO, Alterhum F, Ohta K, Beall DS (1990) Genetic engineering of Escherichia coli and other enterobacteria for ethanol production. In: Pierce GE (ed), Developments in Industrial Microbiology, vol 31. pp 21–30

  • Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Google Scholar 

  • Jansen NB, Flickinger MC, Tsao GT (1984) Production of 2,3-butanediol from xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26:362–368

    CAS  Google Scholar 

  • Kaar WE, Holtzaple MT (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    Article  CAS  Google Scholar 

  • Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Oh DK, Kim JH (1999) Evaluation of xylitol production from corn cob hemicellulose hydrolyzate by Candida parapsilosis. Biotechnol Lett 21:891–895

    Article  CAS  Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomson AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26

    Article  CAS  PubMed  Google Scholar 

  • Kormelink FJM, Voragen AG (1993) Degradation of different [(glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688–695

    CAS  Google Scholar 

  • Kosaric N, Velikonja J (1995) Liquid and gaseous fuels from biotechnology: challenges and opportunities. FEMS Microbiol Rev 16:111–142

    Article  CAS  Google Scholar 

  • Kosaric N, Magee RJ, Blaszczyk R (1992) Redox potential measurement for monitoring glucose and xylose conversion by K. pneumoniae. Chem Biochem Eng Q 6:145–152

    CAS  Google Scholar 

  • Koullas DP, Christakopoulos PE, Kekos D, Koukios EG, Macris BJ (1993) Effect of alkali delignification on wheat straw saccharification by Fusarium oxysporum cellulases. Biomass Bioenergy 4:9–13

    CAS  Google Scholar 

  • Kurakake M, Kisaka W, Ouchi K, Komaki T (2001) Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass. Appl Biochem Biotechnol 90:251–259

    CAS  PubMed  Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  CAS  PubMed  Google Scholar 

  • Leathers TD, Dien BS (2000) Xylitol production from corn fiber hydrolyzate by a two-stage fermentation process. Process Biochem 35:765–769

    Article  CAS  PubMed  Google Scholar 

  • Leathers TD, Gupta SC (1997) Saccharification of corn fiber using enzymes from Aureobasidium sp. strain NRRL Y-2311-1. Appl Biochem Biotechnol 59:337–347

    Google Scholar 

  • Lee SF, Forsberg CW (1987) Purification and characterization of an α-l-arabinofuranosidase from Clostridium acetobutylicum ATCC 824. Can J Microbiol 33:1011–1016

    CAS  Google Scholar 

  • Lee WJ, Ryu YW, Seo JH (2000) Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase. Process Biochem 35:1199–1203

    Article  CAS  PubMed  Google Scholar 

  • Lesage-Meessen L, Delattre M, Haon M, Thibault JF, Colonna Ceccaldi B, Brunerie P, Asther M (1996) Two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50:107–113

    Article  CAS  PubMed  Google Scholar 

  • Maddox IS (1996) Microbial production of 2,3-butanediol. In: Roehr M (ed) Biotechnology, vol 6. Products of primary metabolism. VCH, Weinheim, pp 269–291

  • Magee RJ, Kosaric N (1987) The microbial production of 2,3-butanediol. Adv Appl Microbiol 32:89–161

    CAS  Google Scholar 

  • Malaja A, Hamalainen L (1977) Process for making xylitol. US Patent 4,008,285

  • Martinez A, York SW, Yomano LP, Pineda VL, Davis FC, Shelton JC, Ingram LO (1999) Biosynthetic burden and plasmid limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol Prog 15:891–897

    Article  CAS  PubMed  Google Scholar 

  • Mayerhoff ZDVL, Roberto IC, Silva SS (1997) Xylitol production from rice straw hemicellulose hydrolyzate using different yeast strains. Biotechnol Lett 5:407–409

    Article  Google Scholar 

  • McMillan JD (1993) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuel production. American Chemical Society, Washington, D.C., pp 292–323

  • Meinander N, Hahn-Hagerdal B, Linko M, Linko P, Ojamo H (1994) Fed-batch xylitol production with recombinant XYL-1-expressing Saccharomyces cerevisiae using ethanol as a co-substrate. Appl Microbiol Biotechnol 42:334–339

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Dien BS, Skory CD, Chen ZD, Hespell RB, Ho NWY, Dale BE, Bothast RJ (1997) Fermentation of corn fiber sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J Microbiol Biotechnol 13:341–346

    CAS  Google Scholar 

  • Morjanoff PJ, Gray PP (1987) Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol Bioeng 29:733–741

    CAS  Google Scholar 

  • Mueller-Hartley I, Hartley RD, Harris PJ, Curzon EH (1986) Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71–85

    Article  Google Scholar 

  • Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolic repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125

    Article  CAS  PubMed  Google Scholar 

  • Nidetzky B, Neukauser W, Haltrich D, Kulbe KD (1996) Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52:387–396

    Article  CAS  Google Scholar 

  • Nissen AM, Anker L, Munk N, Lange NK (1992) Xylanases for the pulp and paper industry. In: Visser J, Beldman G, Kusters-Van Someren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 325–337

  • Nolleau V, Preziosi-Belloy L, Navarro JM (1995) The reduction of xylose to xylitol by Candida guilliermondii and Candida parapsilosis: incidence of oxygen and pH. Biotechnol Lett 17:417–422

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolyzates. I. Inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolyzates. II. Inhibitors and mechanism of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Parajo JC, Dominguez H, Dominguez JM (1996) Production of xylitol from concentrated wood hydrolyzates by Debaryomyces hansenii: effect of the initial cell concentration. Biotechnol Lett 18:593–598

    CAS  Google Scholar 

  • Parajo JC, Dominguez H, Dominguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolyzates. Enzyme Microb Technol 21:18–24

    CAS  Google Scholar 

  • Persson P, Larsson S, Jonsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thornby L, Gorton L (2002) Supercritical fluid extraction of a lignocellulosic hydrolyzate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79:694–700

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer MJ, Silva SS, Felipe MGA, Roberto IC, Mancilha IM (1996) Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037. Appl Biochem Biotechnol 57/58:423–430

    Google Scholar 

  • Poutanen K, Puls J (1989) The xylanolytic enzyme system of Trichoderma reesei. In: Lewis G, Paice M (eds) Biogenesis and biodegradation of plant cell wall polymers. American Chemical Society, Washington, D.C., pp 630–640

  • Poutanen K, Tenkanen M, Korte H, Puls J (1991) Accessory enzymes involved in the hydrolysis of xylans. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, D.C., pp 426–436

  • Preziosi-Belloy L, Nolleau V, Navarro JM (2000) Xylitol production from aspenwood hemicellulose hydrolyzate by Candida guilliermondii. Biotechnol Lett 22:239–243

    Article  CAS  Google Scholar 

  • Richard P, Putkonen M, Vaananen R, Londesborough J, Penttila M (2002) The missing link in the fungall-arabinose catabolic pathway, identification of the l-xylulose reductase gene. Biochemistry 41:6432–6437

    Article  CAS  PubMed  Google Scholar 

  • Roberto IC, Mancilha IM, Souza CAD, Felipe MGA, Sato S, Castro HFD (1994) Evaluation of rice straw hemicellulose hydrolyzate in the production of xylitol by Candida guilliermondii. Biotechnol Lett 16:1211–1216

    CAS  Google Scholar 

  • Roberto IC, Felipe MGA, Mancilha IM, Vitola M, Sato S, Silva SS (1995) Xylitol production by Candida guilliermondii as an approach for the utilization of agroindustrial residues. Bioresour Technol 51:255–257

    Article  CAS  Google Scholar 

  • Roberto IC, Sato S, Mancilha IM (1996) Effect of inoculum level on xylitol production from rice straw hemicellulose hydrolyzate by Candida guilliermondii. J Ind Microbiol 16:348–350

    CAS  PubMed  Google Scholar 

  • Roberto IC, Silva SS, Felipe MGA, Mancilha IM, Sato S (1996) Bioconversion of rice straw hemicellulose hydrolyzate for the production of xylitol: effect of pH and nitrogen source. Appl Biochem Biotechnol 57/58:339–347

    Google Scholar 

  • Saha BC (2000) α-l-Arabinofuranosidase, biochemistry, molecular biology, and application in biotechnology. Biotechnol Adv 18:403–423

    Article  CAS  Google Scholar 

  • Saha BC (2001) Xylanase from a newly isolated Fusarium verticillioides capable of utilizing corn fiber xylan. Appl Microbiol Biotechnol 56:762–766

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2001) Purification and characterization of an extracellular β-xylosidase from a newly isolated Fusarium verticillioides. J Ind Microbiol Biotechnol 27:241–245

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2002) Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem 37:1279–1284

    Article  CAS  Google Scholar 

  • Saha BC, Bothast RJ (1996) Production ofl-arabitol from L-arabinose by Candida entomaea and Pichia guilliermondii. Appl Microbiol Biotechnol 45:299–306

    Article  CAS  Google Scholar 

  • Saha BC, Bothast RJ (1997) Enzymes in lignocellulosic biomass conversion. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, D.C., pp 46–56

  • Saha BC, Bothast RJ (1997) Microbial production of xylitol. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, D.C., pp 307–319

  • Saha BC, Bothast RJ (1998) Purification and characterization of a novel thermostable α-l-arabinofuranosidase from a color-variant strain of Aureobasidium pullulans. Appl Environ Microbiol 64:216–220

    CAS  PubMed  Google Scholar 

  • Saha BC, Bothast RJ. (1998) Effect of carbon source on production of α-l-arabinofuranosidase by Aureobasidium pullulans. Curr Microbiol 37:337–340

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Bothast RJ (1999) Enzymology of xylan degradation. In: Imam SH, Greene RV, Zaidi BR (eds) Biopolymers: utilizing natures advanced materials. American Chemical Society, Washington, D.C., pp 167–194

    Google Scholar 

  • Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77

    CAS  Google Scholar 

  • Saha BC, Bothast RJ (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22:633–636

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Bothast RJ (1999) Production of 2,3-butanediol by a newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52:321–326

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Dien BS, Bothast RJ (1998) Fuel ethanol production from corn fiber: current status and technical prospects. Appl Biochem Biotechnol 70–72:115–125

    Google Scholar 

  • Saulnier L, Thibault JF (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402

    Article  CAS  Google Scholar 

  • Saulnier L, Marot C, Chanliaud E, Thibault JF (1995) Cell wall polysaccharide interactions in maize bran. Carbohydr Polymers 26:279–287

    Article  CAS  Google Scholar 

  • Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151

    CAS  Google Scholar 

  • Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion ofd-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92

    CAS  Google Scholar 

  • Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing l-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 2:16–24

    Article  Google Scholar 

  • Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochemistry 24:285–289

    Article  CAS  Google Scholar 

  • Silva SS, Felipe GA, Mancilha IM (1998) Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts. A review. Appl Biochem Biotechnol 70–72:331–339

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA (1993) Molecular biology of xylan degradation. FEMS Microbiol Rev 104:65–92

    Article  CAS  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    CAS  Google Scholar 

  • Tran AV, Chambers RP (1987) The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone. Biotechnol Bioeng 29:343–351

    CAS  Google Scholar 

  • Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    CAS  Google Scholar 

  • Viikari L, Tenkanen M, Buchert J, Ratto M, Bailey M, Siika-aho M, Linko M (1993) Hemicellulases for industrial applications. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB, Oxford, pp 131–182

  • Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350

    CAS  Google Scholar 

  • Wang PY, Shopsis C, Schneider H (1980) Fermentation of a pentose by yeasts. Biochem Biophys Res Commun 94:248–254

    CAS  PubMed  Google Scholar 

  • Weil J, Westgate P, Kohlmann K, Ladisch MR (1994) Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb Technol 16:1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion ofd-xylose to xylitol. J Ferment Bioeng 86:1–14

    CAS  Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317

    PubMed  Google Scholar 

  • Wyman CE (1994) Alternative fuels from biomass and their impact on carbon dioxide accumulation. Appl Biochem Biotechnol 45/46:897–915

    Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–16

    CAS  Google Scholar 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol 20:132–138

    Article  CAS  Google Scholar 

  • Yu EKC, Saddler JN (1985) Biomass conversion to butanediol by simultaneous saccharification and fermentation. Trends Biotechnol 3:100–104

    CAS  Google Scholar 

  • Zeikus JG, Lee C, Lee YE, Saha BC (1991) Thermostable saccharidases: new sources, uses, and biodesign. In: Leatham GF, Himmel ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, D.C., pp 36–51

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio M (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    CAS  Google Scholar 

  • Zhang M, Chou Y, Picataggio S, Finklestein M (1998) Zymomonas mobilis strain for xylose utilization and arabinose fermentation. US Patent 5,843, 760

    Google Scholar 

  • Zheng Y, Lin HM, Wen J, Cao N, Yu X, Tsao GT (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850

    CAS  Google Scholar 

  • Zheng YZ, Lin HM, Tsao GT (1998) Pretreatment of cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896

    Article  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4