Ayyadurai, N., Ravindra, N.P., Sreehari, R.M., Sunish, K.R., Samrat, S.K., Manohar, M., and Sakthivel, N. (2006). Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J. Appl. Microbiol. 100, 926–937.
Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van, O.H., Van, M.M., and Inze, D. (1995). Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405–1419.
Boot, K.J.M., van, Brussel, A.A.N., Tak, T., Spaink, H.P., and Kijne, J.W. (1999). Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol. Plant Microbe Interact. 12, 839–844.
Brazelton, J.N., Pfeufer, E.E., Sweat, T.A., Gardener, B.B., and Coenen, C. (2008). 2,4-diacetylphloroglucinol alters plant root development. Mol. Plant Microbe Interact. 21, 1349–1358.
Bric, J.M., Bostock, R.M., and Silverstone, S.E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrance. Appl. Environ. Microbiol. 57, 535–538.
Cao, H., Bowling, S.A., Gordon, S.A., and Dong, X. (1994). The Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592.
Chang, C., Kwok, S.F., Bleecker, A.B., and Meyerowitz, E.M. (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539–544.
Chung, K.-M., Igari, K., Uchida, N., and Tasaka, M. (2008) New perspectives on plant defense responses through modulation of developmental pathways. Mol. Cells 26, 107–112.
Celenza, J.L., Grisafi, P.L., and Fink, G.R. (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev. 9, 2131–2142.
Contreras-Cornejo, H.A., Macías-Rodríguez, L., Cortés-Penagos, C., and López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149, 1579–1592.
Dey, R., Pal, K.K., Bhatt, D.M., and Chauhan, S.M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159, 371–394.
Dhooge, S., Swarup, R., Graham, N., Inze, D., Sandberg, G., Casero, P.J., and Bennett, M. (2001). Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13, 843–852.
Dobbelaere, S., Croonenborghs, A., Thys, A., Vande, B.A., and Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered IAA production on wheat. Plant Soil 212, 155–164.
Himanen, K., Boucheron, E., Vanneste, S., de Almeida, E.J., Inze, D., and Beeckman, T. (2002). Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339–2351.
Ivanchenko, M.G., Muday, G.K., and Dubrovsky, J.G. (2008). Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 55, 335–347.
Kang, B.R., Yang, K.Y., Cho, B.H., Han, T.H., Kim, I.S., Lee, M.C., Anderson, A.J., and Kim, Y.C. (2006). Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52, 473–476.
Kim, H.S., Sang, M.K., Myung, I.S., Chun, S.C., and Kim, K.D. (2009) Characterization of Bacillus luciferensis Strain KJ2C12 from pepper root, a biocontrol agent of phytophthora blight of pepper. Plant Pathol. J. 25, 62–69.
King, J.J., Stimart, D.P., Fisher, R.H., and Bleecker, A.B. (1995). A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7, 2023–2037.
Liu, L., Kloepper, J.W., and Tuzun, S. (1995). Induction of systemic resistance in cucumber against Fusarium wilt by plant-growthpromoting rhizobacteria. Phytopathology 85, 695–698.
Lopez-Bucio, J., Campos-Cuevas, J.C., Hernandez-Calderon, E., Velasquez-Becerra, C., Farias-Rodriguez, R., Macias-Rodriguez, L.I., and Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 20, 207–217.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant J. 15, 473–497.
Negi, S., Ivanchenko, M.G., and Muday, G.K. (2008). Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 55, 175–187.
Noel, T.C., Sheng, C., Yost, C.K., Pharis, R.P., and Hynes, M.F. (1996). Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can. J. Microbiol. 42, 279–283.
Ortíz-Castro, R., Martínez-Trujillo, M., and López-Bucio, J. (2008). N-acyl-L-homoserine lactones: a class of bacterial quorumsensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ. 31, 1497–1509.
Patten, C.L., and Glick, B.R. (2002). Role of Pseudomous putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795–3801.
Persello-Cartieaux, F., David, P., Sarrobert, C., Thibaud, M.C., Achouak, W., Robaglia, C., and Nussaume, L. (2001). Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212, 190–198.
Raupach, G.S., Liu, L., Murphy, J.F., Tuzun, S., and Kloepper, J.W. (1996). Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80, 891–894.
Rosenblueth, M., and Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19, 827–837.
Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Pare, P.W., and Kloepper, J.W. (2003a). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sic. USA 100, 4927–4932.
Ryu, C.M., Hu, C.H., Reddy, M.S., and Kloepper, J.W. (2003b). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160, 413–420.
Ryu, C.M., Murphy, J.F., Mysore, K.S., and Kloepper, J.W. (2004). Plant growth-promoting rhizobactia systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 39, 381–392.
Ryu, C.M., Hu, C.H., Locy, R.D., and Kloepper, J.W. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268, 285–292.
Spaepen, S., Vanderlevden, J., and Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448.
TaiZ, L., and Zeiger, E. (1998). Plant Physiology (Third Edition). Sinauer Associates, (Sunderland Massachusetts, USA).
Teale, W.D., Paponov, I.A., and Palme, K. (2006). Auxin in action: signaling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859.
Torrey, J.G. (1950). The induction of lateral roots by indoleacetic acid and root decapitation. Am. J. Bot. 37, 257–264.
Tsavkelova, E.A., Cherdvntseva, T.A., Botina, S.G., and Netrusov, A.I. (2007). Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 162, 69–76.
Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971.
Unno, Y., Okubo, K., Wasaki, J., Shinano, T., and Osaki, M. (2005). Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ. Microbiol. 7, 396–404.
von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, P., and Durner, J. (2008). Response of Arabidopsis thaliana to N-hexanoyl-DL: — homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229, 73–85.
Wei, G., Kloepper, J.W., and Tuzun, S. (1991). Induction of systemic resistance of Cucumber to Colletotrichum orbiculare by select strains of platn growth-promoting rhizobacteria. Phytopathology 81, 1508–1512.
Woodward, A.W., and Bartel, B. (2005). Auxin: regulation, action, and interaction. Ann. Bot. 95, 707–735.
Xie, H., Pasternak, J.J., and Glick, B.R. (1996). Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida CR 12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32, 67–71.
Zhang, S., Moyne, A.L., Reddy, M.S., and Kloepper, J.W. (2002). The role of salicylic acid in induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Control 23, 288–296.
Zhang, H., Kim, M.S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M.A., Ryu, C.M., Allen, R., Melo, I.S., et al. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226, 839–851.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4