A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00424-006-0060-y below:

Purinergic transmission in the central nervous system | Pflügers Archiv

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  PubMed  CAS  Google Scholar 

  • Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA99:9840–9845

    Article  PubMed  CAS  Google Scholar 

  • Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17:5297–5304

    PubMed  CAS  Google Scholar 

  • Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM (2005) Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. J Biol Chem 280:10759–10765

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  PubMed  CAS  Google Scholar 

  • Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118

    Google Scholar 

  • Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688

    PubMed  CAS  Google Scholar 

  • Chaudry IH (1982) Does ATP cross the cell plasma membrane. Yale J Biol Med 55:1–10

    PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    PubMed  CAS  Google Scholar 

  • Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877

    Article  PubMed  CAS  Google Scholar 

  • Drury AN (1936) The physiological activity of nucleic acid and its derivatives. Physiol Rev 16:292–325

    CAS  Google Scholar 

  • Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon mammalian heart. J Physiol (London) 68:213–237

    CAS  Google Scholar 

  • Dunn PM, Blakeley AG (1988) Suramin: a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol 93:243–245

    PubMed  CAS  Google Scholar 

  • Edwards FA (1994) ATP receptors. Curr Opin Neurobiol 4:347–352

    Article  PubMed  CAS  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  PubMed  CAS  Google Scholar 

  • Edwards FA, Robertson SJ, Gibb AJ (1997) Properties of ATP receptor-mediated synaptic transmission in the rat medial habenula. Neuropharmacology 36:1253–1268

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505

    Article  PubMed  CAS  Google Scholar 

  • Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633

    Article  PubMed  CAS  Google Scholar 

  • Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, SubbaRow Y (1929) Phosphorous compounds of muscle and liver. Science 70:381–382

    Article  PubMed  CAS  Google Scholar 

  • Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24:50–64

    Article  PubMed  CAS  Google Scholar 

  • Glynn IM (1968) Membrane adenosine triphosphatase and cation transport. Br Med Bull 24:165–169

    PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  • Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261

    Article  PubMed  CAS  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23:4410–4419

    PubMed  CAS  Google Scholar 

  • Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145:494–504

    PubMed  CAS  Google Scholar 

  • Illes P, Ribeiro JA (2004) Neuronal P2 receptors of the central nervous system. Curr Top Med Chem 4:831–838

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Jessell TM (1983) ATP excites a subpopulation of rat dorsal horn neurones. Nature 304:730–733

    Article  PubMed  CAS  Google Scholar 

  • Jo YH, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804

    PubMed  CAS  Google Scholar 

  • Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2:241–245

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871

    PubMed  CAS  Google Scholar 

  • Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol (London) 483(Pt 1):41–57

    CAS  Google Scholar 

  • Kolb HA, Wakelam MJ (1983) Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes. Nature 303:621–623

    Article  PubMed  CAS  Google Scholar 

  • Krishtal OA, Marchenko SM, Pidoplichko VI (1983) Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci Lett 35:41–45

    Article  PubMed  CAS  Google Scholar 

  • Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    Article  PubMed  CAS  Google Scholar 

  • Lippman F (1941) Metabolic generation and utilization of phosphate bond energy. Enzymology 1:99

    Google Scholar 

  • Lohman K (1929) Uber die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17:624–625

    Google Scholar 

  • Moller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Heuss C, Gahwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123

    Article  PubMed  CAS  Google Scholar 

  • Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542

    Article  PubMed  CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  • Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902

    Article  PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536

    Article  PubMed  CAS  Google Scholar 

  • Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2003) P2X receptor-mediated excitatory synaptic currents in somatosensory cortex. Mol Cell Neurosci 24:842–849

    Article  PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  PubMed  CAS  Google Scholar 

  • Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, Edwards FA (1998) ATP and glutamate are released from separate neurones in the rat medial habenula nucleus: frequency dependence and adenosine-mediated inhibition of release. J Physiol 508:691–701

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11:378–386

    Article  PubMed  CAS  Google Scholar 

  • Robitaille R (1995) Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci 15:7121–7131

    PubMed  CAS  Google Scholar 

  • Silinsky EM, Gerzanich V, Vanner SM (1992) ATP mediates excitatory synaptic transmission in mammalian neurones. Br J Pharmacol 106:762–763

    PubMed  CAS  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  PubMed  CAS  Google Scholar 

  • Strehler BL, Totter JR (1952) Firefly luminescence in the study of energy transfer mechanisms. I. Substrate and enzyme determination. Arch Biochem Biophys 40:28–41

    Article  PubMed  CAS  Google Scholar 

  • Strehler BL, Totter JR (1954) Determination of ATP and related compounds: firefly luminescence and other methods. Methods Biochem Anal 1:341–356

    Article  PubMed  CAS  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Surprenant A. (2004) P2X purinergic receptor. In: Encyclopedia of biological chemistry, vol 3. Elsevier, pp 183–187

  • Surprenant A, Buell G, North RA (1995) P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci 18:224–229

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR, Nedergaard M (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 102:16466–16471

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  • Vial C, Roberts JA, Evans RJ (2004) Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25:487–493

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  • Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38:12–18

    Article  PubMed  CAS  Google Scholar 

  • White TD (1978) Release of ATP from a synaptosomal preparation by elevated extracellular K+ and by veratridine. J Neurochem 30:329–336

    Article  PubMed  CAS  Google Scholar 

  • White TD (1984) Characteristics of neuronal release of ATP. Prog Neuropsychopharmacol Biol Psychiatry 8:487–493

    Article  PubMed  CAS  Google Scholar 

  • White T, Potter P, Wonnacott S (1980) Depolarisation-induced release of ATP from cortical synaptosomes is not associated with acetylcholine release. J Neurochem 34:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4