A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00421-003-0988-y below:

Estimation of V̇O2max from the ratio between HRmax and HRrest – the Heart Rate Ratio Method

Appendix Derivation of an equation for a relationship betweenO2max and the ratio between HRmax and HRrest

According to the Fick principle,O2max may be expressed as the product of cardiac output () and the arterio-venous O2 difference (CaO2Cv̄O2).

$$ \dot{V}{\text{O}}_{{\text{2}}} = \dot{Q} \cdot {\left( {C_{{\text{a}}} {\text{O}}_{{\text{2}}} - C{\text{\={v}O}}_{{\text{2}}} } \right)} $$

(1)

Thus, since is the product of HR and stroke volume (SV),O2max can be expressed as:

$$ \dot{V}{\text{O}}_{{\text{2}}} = {\text{HR}} \cdot {\text{SV}} \cdot {\left( {C_{{\text{a}}} {\text{O}}_{{\text{2}}} - C{\text{\={v}O}}_{{\text{2}}} } \right)} $$

(2)

When applied to restO2max can be expressed as:

$$ \dot{V}{\text{O}}_{{{\text{2rest}}}} = {\text{HR}}_{{{\text{rest}}}} \cdot {\text{SV}}_{{{\text{rest}}}} \cdot {\left( {C{\text{aO}}_{{\text{2}}} - C{\text{\={v}O}}_{{\text{2}}} } \right)}_{{{\text{rest}}}} $$

(3)

implying that:

$$ \frac{{\dot{V}{\text{O}}_{{{\text{2rest}}}} }} {{{\text{HR}}_{{{\text{rest}}}} \cdot {\text{SV}}_{{{\text{rest}}}} \cdot {\left( {C{\text{aO}}_{{\text{2}}} - C{\text{\={v}O}}_{{\text{2}}} } \right)}_{{{\text{rest}}}} }} = 1 $$

(4)

During maximal exercise the Fick equation reads:

$$ \dot{V}{\text{O}}_{{{\text{2max}}}} {\text{ = HR}}_{{{\text{max}}}} \cdot {\text{SV}}_{{{\text{max}}}} \cdot {\left( {C{\text{aO}}_{{\text{2}}} - C{\text{\={v}O}}_{{\text{2}}} } \right)}_{{{\text{max}}}} $$

(5)

By multiplying the right side of Eq. 5 with 1 in the form of Eq. 4 it follows that:

$$ \dot{V}{\text{O}}_{{{\text{2max}}}} = \frac{{{\text{HR}}_{{{\text{max}}}} \cdot {\text{SV}}_{{{\text{max}}}} \cdot {\left( {C{\text{aO}}_{{\text{2}}} - C\bar{v}{\text{O}}_{{\text{2}}} } \right)}_{{{\text{max}}}} }} {{{\text{HR}}_{{{\text{max}}}} \cdot {\text{SV}}_{{{\text{max}}}} \cdot {\left( {C{\text{aO}}_{{\text{2}}} - C\bar{v}{\text{O}}_{{\text{2}}} } \right)}_{{{\text{rest}}}} }} \cdot \dot{V}{\text{O}}_{{{\text{2rest}}}} $$

(6)

or

$$ \dot{V}{\text{O}}_{{{\text{2max}}}} = {\left( {\frac{{{\text{HR}}_{{{\text{max}}}} }} {{{\text{HR}}_{{{\text{rest}}}} }}} \right)} \cdot {\left( {\frac{{{\text{SV}}_{{{\text{max}}}} }} {{{\text{SV}}_{{{\text{rest}}}} }}} \right)} \cdot {\left( {\frac{{{\left( {C{\text{aO}}_{{\text{2}}} - C\bar{v}{\text{O}}_{{\text{2}}} } \right)}_{{\max }} }} {{{\left( {C{\text{aO}}_{{\text{2}}} - C\bar{v}{\text{O}}_{{\text{2}}} } \right)}_{{{\text{rest}}}} }}} \right)} \cdot \dot{V}{\text{O}}_{{{\text{2rest}}}} $$

(7)

This implies thatO2max may be calculated as the product ofO2max and the ratios of maximal versus resting values of, respectively, HR, SV, and (CaO2Cv̄O2).

O2rest is dependent on and increases with the individual’s body mass. Åstrand and Rodahl (1986) suggest that, relative to body mass (BM), restingO2 equals about 3.5 ml·min−1·kg−1 (one MET), but slightly lower values were reported by McCann and Adams (2002) (3.3 for men and 3.1 for women, respectively). As a compromise we chose 3.4 ml·min−1·kg−1 to represent the mass-specific restingO2max. Accordingly,O2rest (ml·min−1) may be expressed as 3.4 ml·min−1·kg−1 times BM in kg.

$$ \dot{V}{\text{O}}_{{{\text{2max}}}} = {\left( {\frac{{{\text{HR}}_{{{\text{max}}}} }} {{{\text{HR}}_{{{\text{rest}}}} }}} \right)} \cdot {\left( {\frac{{{\text{SV}}_{{{\text{max}}}} }} {{{\text{SV}}_{{{\text{rest}}}} }}} \right)} \cdot {\left( {\frac{{{\left( {C{\text{aO}}_{{\text{2}}} - C\bar{v}{\text{O}}_{{\text{2}}} } \right)}_{{\max }} }} {{{\left( {C{\text{aO}}_{{\text{2}}} - C\bar{v}{\text{O}}_{{\text{2}}} } \right)}_{{{\text{rest}}}} }}} \right)} \cdot {\text{BM}} \cdot {\text{3}}{\text{.4 ml}} \cdot {\text{min}}^{{{\text{ - 1}}}} \cdot {\text{kg}}^{{{\text{ - 1}}}} $$

(8)

From a test perspective only the HRmax-to-HRrest ratio is readily obtainable. The other two ratios in the equation involve complicated measurements, in fact more complicated than the measurement ofO2 itself. Equation 8 suggests, however, that if the max-to-rest ratios of SV and (CaO2Cv̄O2) were approximately constant across individuals,O2max per kg BM may be estimated by experimentally determining the HRmax-to-HRrest ratio, and multiplying this ratio with these constants and 3.4 ml·min−1·kg−1. Nottin et al. (2002) and Chapman et al. (1960) reported the average SVmax·SVrest −1 to be 1.28 and 1.29, respectively, in men, when measured in the supine position. Thus, according to the studies mentioned it appears that SVmax·SVrest −1 may be replaced by a dimensionless value of approximately 1.3.

The arterio-venous oxygen difference increases from rest to maximal exercise. Chapman et al. (1960) found the average ratio between maximal and resting (CaO2Cv̄O2) to be 3.4 in men. We therefore replaced (CaO2Cv̄O2)max·(CaO2Cv̄O2)rest−1 in Eq. 8 with 3.4. Altogether, data from the literature suggest that Eq. 8 may be simplified to the approximation:

$$ \begin{array}{*{20}l} {{\dot{V}{\text{O}}_{{2\max }} } \hfill} & {{ = {\left( {1.3 \cdot 3.4 \cdot {\text{ml}} \cdot \min ^{{ - 1}} \cdot {\text{kg}}^{{ - 1}} } \right)} \cdot {\text{BM}}{\left( {{\text{kg}}} \right)} \cdot \frac{{{\text{HR}}_{{{\text{max}}}} }} {{{\text{HR}}_{{{\text{rest}}}} }}} \hfill} \\ {{} \hfill} & {{ = 15.0{\text{ ml}} \cdot \min ^{{ - 1}} \cdot {\text{BM }}{\left( {{\text{kg}}} \right)} \cdot \frac{{{\text{HR}}_{{{\text{max}}}} }} {{{\text{HR}}_{{{\text{rest}}}} }},\;{\text{or}}} \hfill} \\ \end{array} $$

(9)

$$ {\text{Mass - specific }}\dot{V}{\text{O}}_{{2\max }} = {\left( {15.0\;{\text{ml}} \cdot {\text{min}}^{{{\text{ - 1}}}} \cdot {\text{kg}}^{{ - 1}} } \right)}\frac{{{\text{HR}}_{{\max }} }} {{{\text{HR}}_{{{\text{rest}}}} }} $$

(10)


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4