A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00401-009-0522-3 below:

Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease

  • Alonzo NC, Hyman BT, Rebeck GW, Greenberg SM (1998) Progression of cerebral amyloid angiopathy: accumulation of amyloid-beta40 in affected vessels. J Neuropathol Exp Neurol 57:353–359. doi:10.1097/00005072-199804000-00008

    PubMed  CAS  Google Scholar 

  • Asahina M, Yoshiyama Y, Hattori T (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20:60–63

    PubMed  CAS  Google Scholar 

  • Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 110:222–231. doi:10.1007/s00401-005-1064-y

    PubMed  Google Scholar 

  • Attems J, Quass M, Jellinger KA, Lintner F (2007) Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 257:49–55. doi:10.1016/j.jns.2007.01.013

    PubMed  Google Scholar 

  • Bailey TL, Rivara CB, Rocher AB, Hof PR (2004) The nature and effects of cortical microvascular pathology in aging and Alzheimer’s disease. Neurol Res 26:573–578. doi:10.1179/016164104225016272

    PubMed  Google Scholar 

  • Beach TG, Wilson JR, Sue LI et al (2007) Circle of Willis atherosclerosis: association with Alzheimer’s disease, neuritic plaques and neurofibrillary tangles. Acta Neuropathol 113:13–21. doi:10.1007/s00401-006-0136-y

    PubMed  Google Scholar 

  • Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood–brain barrier. Prog Drug Res 61:39–78

    PubMed  CAS  Google Scholar 

  • Bell RD, Deane R, Chow N et al (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11:143–153. doi:10.1038/ncb1819

    PubMed  CAS  Google Scholar 

  • Bell RD, Sagare AP, Friedman AE et al (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918

    PubMed  CAS  Google Scholar 

  • Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778. doi:10.1038/nrn2494

    PubMed  CAS  Google Scholar 

  • Berzin TM, Zipser BD, Rafii MS et al (2000) Agrin and microvascular damage in Alzheimer’s disease. Neurobiol Aging 21:349–355. doi:10.1016/S0197-4580(00)00121-4

    PubMed  CAS  Google Scholar 

  • Bradbury M (1979) Cerebral arterial supply. In: Bradbury M (ed) The concept of a blood–brain barrier. Wiley, New York, pp 18–19

  • Chen J, Kitchen CM, Streb JW, Miano JM (2002) Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol 34:1345–1356. doi:10.1006/jmcc.2002.2086

    PubMed  CAS  Google Scholar 

  • Cheng T, Petraglia AL, Li Z et al (2006) Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 12:1278–1285. doi:10.1038/nm1498

    PubMed  CAS  Google Scholar 

  • Chow N, Bell RD, Deane R et al (2007) Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer’s phenotype. Proc Natl Acad Sci USA 104:823–828. doi:10.1073/pnas.0608251104

    PubMed  CAS  Google Scholar 

  • Clifford PM, Zarrabi S, Siu G et al (2007) Abeta peptides can enter the brain through a defective blood–brain barrier and bind selectively to neurons. Brain Res 1142:223–236. doi:10.1016/j.brainres.2007.01.070

    PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184. doi:10.1038/ng0694-180

    PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. doi:10.1126/science.8346443

    PubMed  CAS  Google Scholar 

  • Davis J, Xu F, Deane R et al (2004) Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 279:20296–20306. doi:10.1074/jbc.M312946200

    PubMed  CAS  Google Scholar 

  • Davson H, Welch K, Segal MB (1987) Morphological aspects of the barriers: perivascular spaces. In: Davson H (ed) The physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, New York, pp 135–137

  • de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190. doi:10.1016/S1474-4422(04)00683-0

    Google Scholar 

  • Deane R, Bell RD, Sagare A, Zlokovic BZ (2009) Clearance of amyloid-beta peptide across the blood–brain barrier: implications for therapies in Alzhiemer’s disease. CNS Neurol Disord Drug Targets 8. doi:10.2174/187152709787601867 (in press)

  • Deane R, Du Yan S, Submamaryan RK et al (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9:907–913. doi:10.1038/nm890

    PubMed  CAS  Google Scholar 

  • Deane R, Sagare A, Hamm K et al (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013. doi:10.1172/JCI36663

    PubMed  CAS  Google Scholar 

  • Deane R, Wu Z, Sagare A et al (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43:333–344. doi:10.1016/j.neuron.2004.07.017

    PubMed  CAS  Google Scholar 

  • Drzezga A, Lautenschlager N, Siebner H et al (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113. doi:10.1007/s00259-003-1194-1

    PubMed  Google Scholar 

  • El Khoury J, Toft M, Hickman SE et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438. doi:10.1038/nm1555

    PubMed  CAS  Google Scholar 

  • Ervin JF, Pannell C, Szymanski M, Welsh-Bohmer K, Schmechel DE, Hulette CM (2004) Vascular smooth muscle actin is reduced in Alzheimer disease brain: a quantitative analysis. J Neuropathol Exp Neurol 63:735–741

    PubMed  CAS  Google Scholar 

  • Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611. doi:10.1016/S0301-0082(00)00068-X

    PubMed  CAS  Google Scholar 

  • Fiala M, Lin J, Ringman J et al (2005) Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 7:221–232 discussion 55–62

    PubMed  CAS  Google Scholar 

  • Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004. doi:10.1161/01.STR.0000119383.76447.05

    PubMed  CAS  Google Scholar 

  • Giri R, Shen Y, Stins M et al (2000) Beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 279:C1772–C1781

    PubMed  CAS  Google Scholar 

  • Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335. doi:10.1152/japplphysiol.00966.2005

    PubMed  CAS  Google Scholar 

  • Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49:697–705. doi:10.1002/ana.1009

    PubMed  CAS  Google Scholar 

  • Grammas P, Yamada M, Zlokovic B (2002) The cerebromicrovasculature: a key player in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 4:217–223

    PubMed  CAS  Google Scholar 

  • Greenberg SM, Gurol ME, Rosand J, Smith EE (2004) Amyloid angiopathy-related vascular cognitive impairment. Stroke 35:2616–2619. doi:10.1161/01.STR.0000143224.36527.44

    PubMed  Google Scholar 

  • Griffin JH, Zlokovic B, Fernandez JA (2002) Activated protein C: potential therapy for severe sepsis, thrombosis, and stroke. Semin Hematol 39:197–205. doi:10.1053/shem.2002.34093

    PubMed  CAS  Google Scholar 

  • Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci USA 106:1261–1266. doi:10.1073/pnas.0805453106

    PubMed  CAS  Google Scholar 

  • Hendriks L, van Duijn CM, Cras P et al (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet 1:218–221. doi:10.1038/ng0692-218

    PubMed  CAS  Google Scholar 

  • Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360. doi:10.1523/JNEUROSCI.0616-08.2008

    PubMed  CAS  Google Scholar 

  • Hirao K, Ohnishi T, Hirata Y et al (2005) The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28:1014–1021. doi:10.1016/j.neuroimage.2005.06.066

    PubMed  Google Scholar 

  • Hofman A, Ott A, Breteler MM et al (1997) Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349:151–154. doi:10.1016/S0140-6736(96)09328-2

    PubMed  CAS  Google Scholar 

  • Honig LS, Kukull W, Mayeux R (2005) Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology 64:494–500

    PubMed  Google Scholar 

  • Hunt A, Schonknecht P, Henze M, Seidl U, Haberkorn U, Schroder J (2007) Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Res 155:147–154. doi:10.1016/j.pscychresns.2006.12.003

    PubMed  CAS  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360. doi:10.1038/nrn1387

    PubMed  CAS  Google Scholar 

  • Itoh Y, Yamada M, Hayakawa M, Otomo E, Miyatake T (1993) Cerebral amyloid angiopathy: a significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly. J Neurol Sci 116:135–141. doi:10.1016/0022-510X(93)90317-R

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836. doi:10.1007/s007020200068

    PubMed  CAS  Google Scholar 

  • Johnson NA, Jahng GH, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859. doi:10.1148/radiol.2343040197

    PubMed  Google Scholar 

  • Jung SS, Zhang W, Van Nostrand WE (2003) Pathogenic A beta induces the expression and activation of matrix metalloproteinase-2 in human cerebrovascular smooth muscle cells. J Neurochem 85:1208–1215. doi:10.1046/j.1471-4159.2003.01745.x

    PubMed  CAS  Google Scholar 

  • Kalaria RN, Hedera P (1995) Differential degeneration of the cerebral microvasculature in Alzheimer’s disease. Neuroreport 6:477–480. doi:10.1097/00001756-199502000-00018

    PubMed  CAS  Google Scholar 

  • Kalaria RN, Pax AB (1995) Increased collagen content of cerebral microvessels in Alzheimer’s disease. Brain Res 705:349–352. doi:10.1016/0006-8993(95)01250-8

    PubMed  CAS  Google Scholar 

  • Kalback W, Esh C, Castano EM et al (2004) Atherosclerosis, vascular amyloidosis and brain hypoperfusion in the pathogenesis of sporadic Alzheimer’s disease. Neurol Res 26:525–539. doi:10.1179/016164104225017668

    PubMed  CAS  Google Scholar 

  • Kawai M, Kalaria RN, Cras P et al (1993) Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer disease. Brain Res 623:142–146. doi:10.1016/0006-8993(93)90021-E

    PubMed  CAS  Google Scholar 

  • Kida S, Steart PV, Zhang ET, Weller RO (1993) Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages. Acta Neuropathol 85:646–652. doi:10.1007/BF00334675

    PubMed  CAS  Google Scholar 

  • Kim HC, Yamada K, Nitta A et al (2003) Immunocytochemical evidence that amyloid beta (1–42) impairs endogenous antioxidant systems in vivo. Neuroscience 119:399–419. doi:10.1016/S0306-4522(02)00993-4

    PubMed  CAS  Google Scholar 

  • Li S, Wang DZ, Wang Z, Richardson JA, Olson EN (2003) The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci USA 100:9366–9370. doi:10.1073/pnas.1233635100

    PubMed  CAS  Google Scholar 

  • Llorente-Cortes V, Costales P, Bernues J, Camino-Lopez S, Badimon L (2006) Sterol regulatory element-binding protein-2 negatively regulates low density lipoprotein receptor-related protein transcription. J Mol Biol 359:950–960. doi:10.1016/j.jmb.2006.04.008

    PubMed  CAS  Google Scholar 

  • Martel CL, Mackic JB, Matsubara E et al (1997) Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood–brain barrier transport of circulating Alzheimer’s amyloid beta. J Neurochem 69:1995–2004

    Article  PubMed  CAS  Google Scholar 

  • McComb JG, Zlokovic BV (1994) Cerebrospinal fluid and the blood–brain interface. In: Cheek WR (ed) Pediatric neurosurgery: surgery of the developing nervous system, 3rd edn. Saunders, Philladelphia, pp 180–198

  • Monro OR, Mackic JB, Yamada S et al (2002) Substitution at codon 22 reduces clearance of Alzheimer’s amyloid-beta peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol Aging 23:405–412. doi:10.1016/S0197-4580(01)00317-7

    PubMed  CAS  Google Scholar 

  • Mosconi L, Sorbi S, de Leon MJ et al (2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 47:1778–1786

    PubMed  CAS  Google Scholar 

  • Nilsberth C, Westlind-Danielsson A, Eckman CB et al (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4:887–893. doi:10.1038/nn0901-887

    PubMed  CAS  Google Scholar 

  • Park L, Anrather J, Forster C, Kazama K, Carlson GA, Iadecola C (2004) Abeta-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex. J Cereb Blood Flow Metab 24:334–342. doi:10.1097/01.WCB.0000105800.49957.1E

    PubMed  CAS  Google Scholar 

  • Parks JK, Smith TS, Trimmer PA, Bennett JP Jr, Parker WD Jr (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76:1050–1056. doi:10.1046/j.1471-4159.2001.00112.x

    PubMed  CAS  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704. doi:10.1038/nature05193

    PubMed  CAS  Google Scholar 

  • Pettersen JA, Sathiyamoorthy G, Gao FQ et al (2008) Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch Neurol 65:790–795. doi:10.1001/archneur.65.6.790

    PubMed  Google Scholar 

  • Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO (2003) Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29:106–117. doi:10.1046/j.1365-2990.2003.00424.x

    PubMed  CAS  Google Scholar 

  • Quinn KA, Grimsley PG, Dai YP, Tapner M, Chesterman CN, Owensby DA (1997) Soluble low density lipoprotein receptor-related protein (LRP) circulates in human plasma. J Biol Chem 272:23946–23951. doi:10.1074/jbc.272.38.23946

    PubMed  CAS  Google Scholar 

  • Reynolds PR, Mucenski ML, Le Cras TD, Nichols WC, Whitsett JA (2004) Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem 279:37124–37132. doi:10.1074/jbc.M405254200

    PubMed  CAS  Google Scholar 

  • Rombouts SA, Goekoop R, Stam CJ, Barkhof F, Scheltens P (2005) Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage 26:1078–1085. doi:10.1016/j.neuroimage.2005.03.022

    PubMed  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216. doi:10.1016/S1474-4422(09)70016-X

    PubMed  CAS  Google Scholar 

  • Ruitenberg A, den Heijer T, Bakker SL et al (2005) Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57:789–794. doi:10.1002/ana.20493

    PubMed  Google Scholar 

  • Sagare A, Deane R, Bell RD et al (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13:1029–1031. doi:10.1038/nm1635

    PubMed  CAS  Google Scholar 

  • Saido TC, Iwata N (2006) Metabolism of amyloid beta peptide and pathogenesis of Alzheimer’s disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci Res 54:235–253. doi:10.1016/j.neures.2005.12.015

    PubMed  CAS  Google Scholar 

  • Samuraki M, Matsunari I, Chen WP et al (2007) Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 34:1658–1669. doi:10.1007/s00259-007-0454-x

    PubMed  Google Scholar 

  • Santpere G, Puig B, Ferrer I (2007) Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer’s disease and cerebral amyloid angiopathy. Neuroscience 146:1640–1651. doi:10.1016/j.neuroscience.2007.03.013

    PubMed  CAS  Google Scholar 

  • Scheibel AB, Duong TH, Jacobs R (1989) Alzheimer’s disease as a capillary dementia. Ann Med 21:103–107. doi:10.3109/07853898909149194

    PubMed  CAS  Google Scholar 

  • Segal MB, Preston JE, Collis CS, Zlokovic BV (1990) Kinetics and Na independence of amino acid uptake by blood side of perfused sheep choroid plexus. Am J Physiol 258:F1288–F1294

    PubMed  CAS  Google Scholar 

  • Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi:10.1038/nm1782

    PubMed  CAS  Google Scholar 

  • Shibata M, Yamada S, Kumar SR et al (2000) Clearance of Alzheimer’s amyloid-beta (1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J Clin Invest 106:1489–1499. doi:10.1172/JCI10498

    PubMed  CAS  Google Scholar 

  • Sun Q, Chen G, Streb JW et al (2006) Defining the mammalian CArGome. Genome Res 16:197–207. doi:10.1101/gr.4108706

    PubMed  CAS  Google Scholar 

  • Tagliavini FRG, Padovani A, Magoni M, Andora G, Sgarzi M, Bizzi ASM, Carella F, Morbin M, Giaccone G, Bugiani O (1999) A new beta APP mutation related to hereditary cerebral haemorrhage. Alzheimers Rep 2:S28

    Google Scholar 

  • Tamaki C, Ohtsuki S, Iwatsubo T et al (2006) Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res 23:1407–1416. doi:10.1007/s11095-006-0208-7

    PubMed  CAS  Google Scholar 

  • Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555. doi:10.1016/j.cell.2005.02.008

    PubMed  CAS  Google Scholar 

  • Thal DR, Griffin WS, de Vos RA, Ghebremedhin E (2008) Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 115:599–609. doi:10.1007/s00401-008-0366-2

    PubMed  CAS  Google Scholar 

  • Trembath D, Ervin JF, Broom L et al (2007) The distribution of cerebrovascular amyloid in Alzheimer’s disease varies with ApoE genotype. Acta Neuropathol 113:23–31. doi:10.1007/s00401-006-0162-9

    PubMed  CAS  Google Scholar 

  • Urmoneit B, Prikulis I, Wihl G et al (1997) Cerebrovascular smooth muscle cells internalize Alzheimer amyloid beta protein via a lipoprotein pathway: implications for cerebral amyloid angiopathy. Lab Invest 77:157–166

    PubMed  CAS  Google Scholar 

  • Van Broeckhoven C, Haan J, Bakker E et al (1990) Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248:1120–1122. doi:10.1126/science.1971458

    PubMed  Google Scholar 

  • van Oijen M, de Jong FJ, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2007) Atherosclerosis and risk for dementia. Ann Neurol 61:403–410. doi:10.1002/ana.21073

    PubMed  Google Scholar 

  • Verbeek MM, Otte-Holler I, van den Born J et al (1999) Agrin is a major heparan sulfate proteoglycan accumulating in Alzheimer’s disease brain. Am J Pathol 155:2115–2125

    PubMed  CAS  Google Scholar 

  • Verbeek MM, Van Nostrand WE, Otte-Holler I, Wesseling P, De Waal RM (2000) Amyloid-beta-induced degeneration of human brain pericytes is dependent on the apolipoprotein E genotype. Ann N Y Acad Sci 903:187–199. doi:10.1111/j.1749-6632.2000.tb06368.x

    PubMed  CAS  Google Scholar 

  • Vinters HV, Secor DL, Read SL et al (1994) Microvasculature in brain biopsy specimens from patients with Alzheimer’s disease: an immunohistochemical and ultrastructural study. Ultrastruct Pathol 18:333–348. doi:10.3109/01913129409023202

    PubMed  CAS  Google Scholar 

  • von Arnim CA, Kinoshita A, Peltan ID et al (2005) The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 280:17777–17785. doi:10.1074/jbc.M414248200

    Google Scholar 

  • von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629. doi:10.1016/j.yexcr.2005.10.019

    Google Scholar 

  • Wang D, Chang PS, Wang Z et al (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105:851–862. doi:10.1016/S0092-8674(01)00404-4

    PubMed  CAS  Google Scholar 

  • Wegiel J, Wisniewski HM (1990) The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol 81:116–124. doi:10.1007/BF00334499

    PubMed  CAS  Google Scholar 

  • Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14. doi:10.1007/s00401-008-0457-0

    PubMed  CAS  Google Scholar 

  • Wisniewski T, Frangione B (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 135:235–238. doi:10.1016/0304-3940(92)90444-C

    PubMed  CAS  Google Scholar 

  • Wu Z, Guo H, Chow N et al (2005) Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 11:959–965

    PubMed  CAS  Google Scholar 

  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709. doi:10.1038/sj.jcbfm.9600440

    PubMed  CAS  Google Scholar 

  • Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123

    PubMed  CAS  Google Scholar 

  • Zhong Z, Deane R, Ali Z et al (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11:420–422. doi:10.1038/nn2073

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (1996) Cerebrovascular transport of Alzheimer’s amyloid beta and apolipoproteins J and E: possible anti-amyloidogenic role of the blood–brain barrier. Life Sci 59:1483–1497. doi:10.1016/0024-3205(96)00310-4

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28:202–208. doi:10.1016/j.tins.2005.02.001

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. doi:10.1016/j.neuron.2008.01.003

    PubMed  CAS  Google Scholar 

  • Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B (2000) Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat Med 6:718. doi:10.1038/77397

    CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4