A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00401-009-0502-7 below:

The role of proteomics in dementia and Alzheimer’s disease

  • Abdi F, Quinn JF, Jankovic J et al (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9:293–348

    PubMed  CAS  Google Scholar 

  • Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine-oxidase in dementia of Alzheimer type. Life Sci 27:1029–1034. doi:10.1016/0024-3205(80)90025-9

    Article  PubMed  CAS  Google Scholar 

  • Ai KZ, Vermuyten K, Dedeyn PP, Lowenthal A, Karcher D (1989) A serum-protein involved in aging. Mol Chem Neuropathol 11:131–141

    Article  PubMed  CAS  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. doi:10.1016/S0304-3940(01)01636-6

    Article  PubMed  CAS  Google Scholar 

  • Alafuzoff I, Adolfsson R, Bucht G, Jellum E, Mehta PD, Winblad B (1986) Isoelectric-focusing and two-dimensional gel-electrophoresis in plasma and cerebrospinal-fluid from patients with dementia. Eur Neurol 25:285–289. doi:10.1159/000116023

    Article  PubMed  CAS  Google Scholar 

  • Alban A, David SO, Bjorkesten L et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44. doi:10.1002/pmic.200390006

    Article  PubMed  CAS  Google Scholar 

  • Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathological changes in nondemented elderly individuals matches the pattern in Alzheimers disease. Neurology 42:1681–1688

    PubMed  CAS  Google Scholar 

  • Blennow K (2005) CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 5:661–672. doi:10.1586/14737159.5.5.661

    Article  PubMed  CAS  Google Scholar 

  • Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613. doi:10.1016/S1474-4422(03)00530-1

    Article  PubMed  CAS  Google Scholar 

  • Brechlin P, Jahn O, Steinacker P et al (2008) Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease. Proteomics 8:4357–4366. doi:10.1002/pmic.200800375

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Castegna A (2003) Proteomic analysis of oxidatively modified proteins in Alzheimer’s disease brain: insights into neurodegeneration. Cell Mol Biol 49:747–751

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Sultana R (2007) Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 12:61–72

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Sultana R (2008) Identification of 3-nitrotyosine-modified brain proteins by redox proteomics. Nitric oxide, Part F. Methods Enzymol 440:295–308

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Boyd-Kimball D, Castegna A (2003) Proteomics in Alzheimer’s disease: insights into potential mechanisms of neurodegeneration. J Neurochem 86:1313–1327. doi:10.1046/j.1471-4159.2003.01948.x

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50. doi:10.1016/j.ejphar.2006.06.026

    Article  PubMed  CAS  Google Scholar 

  • Carrette O, Demalte I, Scherl A et al (2003) A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3:1486–1494. doi:10.1002/pmic.200300470

    Article  PubMed  CAS  Google Scholar 

  • Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res 28:155–163. doi:10.1179/016164106X98035

    Article  PubMed  CAS  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part 1. Creatine kinase bb, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571. doi:10.1016/S0891-5849(02)00914-0

    Article  PubMed  CAS  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II. Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82:1524–1532. doi:10.1046/j.1471-4159.2002.01103.x

    Article  PubMed  CAS  Google Scholar 

  • Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem 85:1394–1401. doi:10.1046/j.1471-4159.2003.01786.x

    Article  PubMed  CAS  Google Scholar 

  • Chait BT, Kent SBH (1992) Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science 257:1885–1894. doi:10.1126/science.1411504

    Article  PubMed  CAS  Google Scholar 

  • Cheon MS, Kim SH, Fountoulakis M, Lubec G (2003) Heart type fatty acid binding protein (H-FABP) is decreased in brains of patients with Down syndrome and Alzheimer’s disease. J Neural Trans Suppl 225–234

  • Choe LH, Dutt MJ, Relkin N, Lee KH (2002) Studies of potential cerebrospinal fluid molecular markers for Alzheimer’s disease. Electrophoresis 23:2247–2251. doi:10.1002/1522-2683(200207)23:14<2247::AID-ELPS2247>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  • Chromy BA, Gonzales AD, Perkins J et al (2004) Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. J Proteome Res 3:1120–1127. doi:10.1021/pr049921p

    Article  PubMed  CAS  Google Scholar 

  • Colciaghi F, Marcello E, Borroni B et al (2004) Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology 62:498–501

    PubMed  CAS  Google Scholar 

  • Davidsson P, Sjogren M, Andreasen N et al (2002) Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Brain Res Mol Brain Res 109:128–133. doi:10.1016/S0169-328X(02)00549-1

    Article  PubMed  CAS  Google Scholar 

  • Davidsson P, Westman-Brinkmalm A, Nilsson CL et al (2002) Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13:611–615. doi:10.1097/00001756-200204160-00015

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimers disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746. doi:10.1016/S1474-4422(07)70178-3

    Article  PubMed  Google Scholar 

  • Edgar PF, Schonberger SJ, Dean B, Faull RLM, Kydd R, Cooper GJS (1999) A comparative proteome analysis of hippocampal tissue from schizophrenic and Alzheimer’s disease individuals. Mol Psychiatry 4:173–178. doi:10.1038/sj.mp.4000463

    Article  PubMed  CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71. doi:10.1126/science.2675315

    Article  PubMed  CAS  Google Scholar 

  • Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann Neurol 61:120–129. doi:10.1002/ana.21038

    Article  PubMed  CAS  Google Scholar 

  • Fountoulakis M, Cairns N, Lubec G (1999) Increased levels of 14–3-3 gamma and epsilon proteins in brain of patients with Alzheimer’s disease and Down syndrome. J Neural Transm Suppl 57:323–335

    PubMed  CAS  Google Scholar 

  • Frey HJ, Mattila KM, Korolainen MA, Pirttila T (2005) Problems associated with biological markers of Alzheimer’s disease. Neurochem Res 30:1501–1510. doi:10.1007/s11064-005-8827-7

    Article  PubMed  CAS  Google Scholar 

  • Gatz M, Reynolds CA, Fratiglioni L et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174. doi:10.1001/archpsyc.63.2.168

    Article  PubMed  Google Scholar 

  • Gottfries CG (1990) Neurochemical aspects on aging and diseases with cognitive impairment. J Neurosci Res 27:541–547. doi:10.1002/jnr.490270415

    Article  PubMed  CAS  Google Scholar 

  • Greber S, Lubec G, Cairns N, Fountoulakis M (1999) Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer’s disease. Electrophoresis 20:928–934. doi:10.1002/(SICI)1522-2683(19990101)20:4/5<928::AID-ELPS928>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free-radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5:557–561. doi:10.1089/152308603770310202

    Article  PubMed  CAS  Google Scholar 

  • Harrington MG, Merril CR, Asher DM, Gajdusek DC (1986) Abnormal proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. N Engl J Med 315:279–383

    PubMed  CAS  Google Scholar 

  • Hayflick L (1998) How and why we age. Exp Gerontol 33:639–653. doi:10.1016/S0531-5565(98)00023-0

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, Hall N, Subramaniam R et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  PubMed  CAS  Google Scholar 

  • Hortin GL (2006) The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 52:1223–1237. doi:10.1373/clinchem.2006.069252

    Article  PubMed  CAS  Google Scholar 

  • Hortin GL, Jortani SA, Ritchie JC, Valdes R, Chan DW (2006) Proteomics: a new diagnostic frontier. Clin Chem 52:1218–1222. doi:10.1373/clinchem.2006.067280

    Article  PubMed  CAS  Google Scholar 

  • Hsich G, Kinney K, Gibbs CJ, Lee KH, Harrington MG (1996) The 14–3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335:924–930. doi:10.1056/NEJM199609263351303

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Malone JP, Fagan AM, Townsend RR, Holtzman DM (2005) Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. Mol Cell Proteomics 4:2000–2009. doi:10.1074/mcp.M500207-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Hye A, Lynham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050. doi:10.1093/brain/awl279

    Article  PubMed  CAS  Google Scholar 

  • Imhof A, Kovari E, von Gunten A et al (2007) Morphological substrates of cognitive decline in nonagenarians and centenarians: a new paradigm? J Neurol Sci 257:72–79. doi:10.1016/j.jns.2007.01.025

    Article  PubMed  Google Scholar 

  • Issaq HJ (2001) The role of separation science in proteomics research. Electrophoresis 22:3629–3638. doi:10.1002/1522-2683(200109)22:17<3629::AID-ELPS3629>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (1997) Neuropathological staging of Alzheimer-related lesions: the challenge of establishing relations to age. Neurobiol Aging 18:369–375. doi:10.1016/S0197-4580(97)00048-1

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2009) Criteria for the neuropathological diagnosis of dementing disorders: routes out of the swamp? Acta Neuropathol 117:101–110. doi:10.1007/s00401-008-0466-z

    Article  PubMed  Google Scholar 

  • Jin JH, Hulette C, Wang Y et al (2006) Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 5:1193–1204. doi:10.1074/mcp.M500382-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Jung SM, Lee K, Lee J et al (2008) Both plasma retinol-binding protein and haptoglobin precursor allele 1 in CSF: candidate biomarkers for the progression of normal to mild cognitive impairment to Alzheimer’s disease. Neurosci Lett 436:153–157. doi:10.1016/j.neulet.2008.03.010

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    PubMed  CAS  Google Scholar 

  • Kim SH, Vlkolinsky R, Cairns N, Lubec G (2000) Decreased levels of complex III core protein 1 and complex V beta chain in brains from patients with Alzheimer’s disease and Down syndrome. Cell Mol Life Sci 57:1810–1816. doi:10.1007/PL00000661

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) The reduction of NADH ubiquinone oxidoreductase 24-and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer’s disease. Life Sci 68:2741–2750. doi:10.1016/S0024-3205(01)01074-8

    Article  PubMed  CAS  Google Scholar 

  • Korolainen MA, Nyman TA, Nyyssonen P, Hartikainen ES, Pirttila T (2007) Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin Chem 53:657–665. doi:10.1373/clinchem.2006.078014

    Article  PubMed  CAS  Google Scholar 

  • Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G (2003) Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967:152–160. doi:10.1016/S0006-8993(02)04243-9

    Article  PubMed  CAS  Google Scholar 

  • le-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R (2008) Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal 10:445–473. doi:10.1089/ars.2007.1716

    Article  CAS  Google Scholar 

  • Leverenz JB, Umar I, Wang Q et al (2007) Proteomic identification of novel proteins in cortical Lewy bodies. Brain Pathol 17:139–145. doi:10.1111/j.1750-3639.2007.00048.x

    Article  PubMed  CAS  Google Scholar 

  • Lia LJ, Cheng DM, Wang J et al (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279:37061–37068. doi:10.1074/jbc.M403672200

    Article  CAS  Google Scholar 

  • Liang WS, Dunckley T, Beach TG et al (2008) Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genomics 33:240–256. doi:10.1152/physiolgenomics.00242.2007

    Article  PubMed  CAS  Google Scholar 

  • Lubec G, Krapfenbauer K, Fountoulakis M (2003) Proteomics in brain research: potentials and limitations. Prog Neurobiol 69:193–211. doi:10.1016/S0301-0082(03)00036-4

    Article  PubMed  CAS  Google Scholar 

  • Mattila KM, Frey H (1994) Alzheimer brain proteins investigated by 2-dimensional gel-electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15:721–725. doi:10.1002/elps.1150150199

    Article  PubMed  CAS  Google Scholar 

  • Mattila KM, Frey H (1995) Two-dimensional analysis of qualitative and quantitative changes in blood-cell proteins in Alzheimer’s disease: search for extraneuronal markers. Appl Theor Electrophor 4:189–196

    PubMed  CAS  Google Scholar 

  • McFarland MA, Ellis CE, Markey SP, Nussbaum RL (2008) Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 7:2123–2137. doi:10.1074/mcp.M800116-MCP200

    Article  PubMed  CAS  Google Scholar 

  • McLuckey SA, Wells JM (2001) Mass analysis at the advent of the 21st century. Chem Rev 101:571–606. doi:10.1021/cr990087a

    Article  PubMed  CAS  Google Scholar 

  • Meier-Ruge WA, Bertoni-Freddari C (1999) Mitochondrial genome lesions in the pathogenesis of sporadic Alzheimer’s disease. Gerontology 45:289–297. doi:10.1159/000022104

    Article  PubMed  CAS  Google Scholar 

  • Mhyre TR, Loy R, Tariot PN et al (2008) Proteomic analysis of peripheral leukocytes in Alzheimer’s disease patients treated with divalproex sodium. Neurobiol Aging 29:1631–1643. doi:10.1016/j.neurobiolaging.2007.04.004

    Article  PubMed  CAS  Google Scholar 

  • Molloy MP, Brzezinski EE, Hang JQ, McDowell MT, VanBogelen RA (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3:1912–1919. doi:10.1002/pmic.200300534

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Jung K, Ullrich A et al (2008) Disease state, age, sex, and post-mortem time-dependent expression of proteins in AD vs. control frontal cortex brain samples. Curr Alzheimer Res 5:562–571. doi:10.2174/156720508786898488

    Article  PubMed  Google Scholar 

  • Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H (1990) Expression of monoamine oxidase-B activity in astrocytes of senile plaques. Acta Neuropathol 80:419–425. doi:10.1007/BF00307697

    Article  PubMed  CAS  Google Scholar 

  • Newman SF, Sultana R, Perluigi M et al (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85:1506–1514. doi:10.1002/jnr.21275

    Article  PubMed  CAS  Google Scholar 

  • Ofarrell PH (1975) High-resolution 2-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    CAS  Google Scholar 

  • Palagi PM, Hernandez P, Walther D, Appel RD (2006) Proteome informatics I: Bioinformatics tools for processing experimental data. Proteomics 6:5435–5444. doi:10.1002/pmic.200600273

    Article  PubMed  CAS  Google Scholar 

  • Portelius E, Zetterberg H, Andreasson U et al (2006) An Alzheimer’s disease-specific beta-amyloid fragment signature in cerebrospinal fluid. Neurosci Lett 409:215–219. doi:10.1016/j.neulet.2006.09.044

    Article  PubMed  CAS  Google Scholar 

  • Portelius E, Hansson SF, Tran AJ et al (2008) Characterization of tau in cerebrospinal fluid using mass spectrometry. J Proteome Res 7:2114–2120. doi:10.1021/pr7008669

    Article  PubMed  CAS  Google Scholar 

  • Pratico D, Clark CM, Liun F, Lee VYM, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59:972–976. doi:10.1001/archneur.59.6.972

    Article  PubMed  Google Scholar 

  • Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 118:140–146. doi:10.1016/j.molbrainres.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362. doi:10.1038/nm1653

    Article  PubMed  CAS  Google Scholar 

  • Reed T, Pierce WM, Turner DM, Markesbery WR, Butterfield DA (2008) Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J Cell Mol Med [Epub ahead of print]

  • Ross PL, Huang YLN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169. doi:10.1074/mcp.M400129-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Ruetschi U, Zetterberg H, Podust VN et al (2005) Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF. Exp Neurol 196:273–281. doi:10.1016/j.expneurol.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  • Schagger H, Ohm TG (1995) Human diseases with defects in oxidative phosphorylation. 2. F1F0 Atp-synthase defects in Alzheimer disease revealed by blue native polyacrylamide-gel electrophoresis. Eur J Biochem 227:916–921. doi:10.1111/j.1432-1033.1995.tb20219.x

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858. doi:10.1021/ac950914h

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki A, Tsuji T, Kohno R et al (2004) Proteome analysis of brain proteins in Alzheimer’s disease: subproteomics following sequentially extracted protein preparation. J Alzheimers Dis 6:257–268

    PubMed  CAS  Google Scholar 

  • Simonsen AH, McGuire J, Hansson O et al (2007) Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol 64:366–370. doi:10.1001/archneur.64.3.366

    Article  PubMed  Google Scholar 

  • Simonsen AH, McGuire J, Podust VN et al (2008) Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging 29:961–968. doi:10.1016/j.neurobiolaging.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  • Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112. doi:10.1002/jms.703

    Article  PubMed  CAS  Google Scholar 

  • Smith CD, Carney JM, Starkereed PE et al (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543. doi:10.1073/pnas.88.23.10540

    Article  PubMed  CAS  Google Scholar 

  • Stamper C, Siegel A, Liang WS et al (2008) Neuronal gene expression correlates of Parkinson’s disease with dementia. Mov Disord 23:1588–1595. doi:10.1002/mds.22184

    Article  PubMed  Google Scholar 

  • Sultana R, Boyd-Kimball D, Poon HF et al (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:1564–1576. doi:10.1016/j.neurobiolaging.2005.09.021

    Article  PubMed  CAS  Google Scholar 

  • Sultana R, Poon HF, Cai J et al (2006) Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis 22:76–87. doi:10.1016/j.nbd.2005.10.004

    Article  PubMed  CAS  Google Scholar 

  • Sultana R, Boyd-Kimball D, Cai J et al (2007) Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J Alzheimers Dis 11:153–164

    PubMed  CAS  Google Scholar 

  • Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM, Butterfield DA (2007) Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J Cell Mol Med 11:839–851. doi:10.1111/j.1582-4934.2007.00065.x

    Article  PubMed  CAS  Google Scholar 

  • Tannu N, Hemby SE (2006) Quantitation in two-dimensional fluorescence difference gel electrophoresis: effect of protein fixation. Electrophoresis 27:2011–2015. doi:10.1002/elps.200500710

    Article  PubMed  CAS  Google Scholar 

  • Thiede B, Hohenwarter W, Krah A et al (2005) Peptide mass fingerprinting. Methods 35:237–247. doi:10.1016/j.ymeth.2004.08.015

    Article  PubMed  CAS  Google Scholar 

  • Tsuji T, Shiozaki A, Kohno R, Yoshizato K, Shimohama S (2002) Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem Res 27:1245–1253. doi:10.1023/A:1020941929414

    Article  PubMed  CAS  Google Scholar 

  • Ueno I, Sakai T, Yamaoka M, Yoshida R, Tsugita A (2000) Analysis of blood plasma proteins in patients with Alzheimer’s disease by two-dimensional electrophoresis, sequence homology and immunodetection. Electrophoresis 21:1832–1845. doi:10.1002/(SICI)1522-2683(20000501)21:9<1832::AID-ELPS1832>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  • Utermann G, Hees M, Steinmetz A (1977) Polymorphism of Apolipoprotein-e and occurrence of dys-beta-lipoproteinemia in man. Nature 269:604–607. doi:10.1038/269604a0

    Article  PubMed  CAS  Google Scholar 

  • Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) Decreased brain levels of 2′, 3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging 22:547–553. doi:10.1016/S0197-4580(01)00218-4

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Woltjer RL, Cimino PJ et al (2005) Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament in tau binding protein. FASEB J 19:869–871. doi:10.1096/fj.04-2370com

    Article  PubMed  CAS  Google Scholar 

  • Wilson KE, Marouga R, Prime JE et al (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5:3851–3858. doi:10.1002/pmic.200401255

    Article  PubMed  CAS  Google Scholar 

  • Winkler W, Zellner M, Diestinger M et al (2008) Biological variation of the platelet proteome in the elderly population and its implication for biomarker research. Mol Cell Proteomics 7:193–203. doi:10.1074/mcp.M700137-MCP200

    PubMed  CAS  Google Scholar 

  • Wu WW, Wang GH, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658. doi:10.1021/pr050405o

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Taylor M, Davey F et al (2007) Interaction of amyloid binding alcohol dehydrogenase/A beta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s disease mouse model. Mol Cell Neurosci 35:377–382. doi:10.1016/j.mcn.2007.03.013

    Article  PubMed  CAS  Google Scholar 

  • Yoo BC, Fountoulakis M, Cairns N, Lubec G (2001) Changes of voltage-dependent anion-selective channel proteins VDAC1 and VDAC2 brain levels in patients with Alzheimer’s disease and Down syndrome. Electrophoresis 22:172–179. doi:10.1002/1522-2683(200101)22:1<172::AID-ELPS172>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  • Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G (2001) Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 280:249–258. doi:10.1006/bbrc.2000.4109

    Article  PubMed  CAS  Google Scholar 

  • Zannis VI, Breslow JL (1981) Human very low-density lipoprotein apolipoprotein-e isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry 20:1033–1041. doi:10.1021/bi00507a059

    Article  PubMed  CAS  Google Scholar 

  • Zhang RL, Barker L, Pinchev D et al (2004) Mining biomarkers in human sera using proteomic tools. Proteomics 4:244–256. doi:10.1002/pmic.200300495

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Goodlett DR, Quinn JF et al (2005) Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 7:125–133

    PubMed  CAS  Google Scholar 

  • Zhang J, Sokal I, Peskind ER et al (2008) CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol 129:526–529. doi:10.1309/W01Y0B808EMEH12L

    Article  PubMed  CAS  Google Scholar 

  • Zolg W (2006) The proteomic search for diagnostic biomarkers: lost in translation? Mol Cell Proteomics 5:1720–1726. doi:10.1074/mcp.R600001-MCP200

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4