A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00299-019-02447-5 below:

Root exudates: from plant to rhizosphere and beyond

  • Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281. https://doi.org/10.1016/j.soilbio.2010.08.029

    Article  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6:239–246. https://doi.org/10.1080/17429145.2010.545147

    Article  CAS  Google Scholar 

  • Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation—effects of temporary immersion of explants. Plant Cell Tissue Organ Cult 32:55–60

    Article  Google Scholar 

  • Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Benyoussef EH, Thi DV, Assaf-Ducrocq C, Gontier E (2009) Influence of minerals and elicitation on Datura stramonium L. tropane alkaloid production: modelization of the in vitro biochemical response. Plant Sci 177:81–87. https://doi.org/10.1016/j.plantsci.2009.03.016

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Peña C, Jasinki M, Santelia D, Martinoia W, Summer LW, Banta LM, Stermitz F, Vivanco JM (2008a) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771. https://doi.org/10.1104/pp.107.109587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreu L, Vivanco JM (2008b) Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytol 179:209–223. https://doi.org/10.1111/j.1469-8137.2008.02458.x

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017. https://doi.org/10.1104/pp.109.147462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, Vivanco JM (2010) Root secretion of phytochemicals in Arabidopsis is predominantly not influenced by diurnal rhythms. Mol Plant 3:491–498. https://doi.org/10.1093/mp/ssq004

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512. https://doi.org/10.1074/jbc.M112.433300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98. https://doi.org/10.1016/j.tplants.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Walker TS, Schweizer Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995. https://doi.org/10.1016/S0981-9428(02)01460-2

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Baptist F, Aranjuelo I, Legay N, Lopez-Sangil L, Molero G, Rovira P, Nogués S (2015) Rhizodeposition of organic carbon by plants with contrasting traits for resource acquisition: responses to different fertility regimes. Plant Soil 394:391–406. https://doi.org/10.1007/s11104-015-2531-4

    Article  CAS  Google Scholar 

  • Barbas C, García JAL, Gutiérrez Mañero FJ (1999) Separation and identification of organic acids in root exudates of Lupinus luteus by capillary zone electrophoresis. Phytochem Anal 10:55–59. https://doi.org/10.1002/(SICI)1099-1565(199903/04)10:2%3c55:AID-PCA437%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20. https://doi.org/10.9734/AJEA/2011/002

    Article  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Kumar V, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bompadre MJ, Silvani VA, Bidondo LF, Ríos de Molina MDC, Colombo RP, Pardo AG, Godeas AM (2014) Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions. Botany 92:187–193. https://doi.org/10.1139/cjb-2013-0169

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. https://doi.org/10.1038/ncomms1046

    Article  CAS  PubMed  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495. https://doi.org/10.1017/S1464793103006316

    Article  PubMed  Google Scholar 

  • Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029. https://doi.org/10.1093/pcp/pcu035

    Article  CAS  PubMed  Google Scholar 

  • Cardillo AB, Otálvaro AÁM, Busto VD, Talou JR, Velásquez LME, Giulietti AM (2010) Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochem 45:1577–1581. https://doi.org/10.1016/j.procbio.2010.06.002

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Jajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11. https://doi.org/10.1002/jpln.201000085

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731. https://doi.org/10.1371/journal.pone.0055731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020. https://doi.org/10.3389/fpls.2015.01020

    Article  PubMed  PubMed Central  Google Scholar 

  • Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318. https://doi.org/10.1016/j.plaphy.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083. https://doi.org/10.1023/A:1025634402071

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. https://doi.org/10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena J, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493. https://doi.org/10.1007/s11104-009-0127-6

    Article  CAS  Google Scholar 

  • Dardanelli MS, de Córdoba FJF, Estévez J, Contreras R, Cubo MT, Rodríguez-Carvajal MA, Gil-Serrano AM, López-Baena FJ, Bellogín R, Manayni H, Ollero FJ, Megías M (2012) Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl Soil Ecol 57:31–38. https://doi.org/10.1016/j.apsoil.2012.01.005

    Article  Google Scholar 

  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262. https://doi.org/10.1016/j.febslet.2007.03.057

    Article  CAS  PubMed  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327. https://doi.org/10.1111/j.1574-6941.2010.00860.x

    Article  CAS  PubMed  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2018) Engineering the rhizosphere. Trends Plant Sci 21(3):266–278. https://doi.org/10.1016/j.tplants.2016.01.002

    Article  CAS  Google Scholar 

  • Dreyer I, Gomez-Porras JL, Riaño-Pachón DM, Hedrich R, Geiger D (2012) Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front Plant Sci 3:263. https://doi.org/10.3389/fpls.2012.00263

    Article  PubMed  PubMed Central  Google Scholar 

  • Dundek P, Holík L, Rohlík T, Vranová V, Rejšek K, Formánek P (2011) Methods of plant root exudate analysis: a review. Acta Univ Agric Silvic Mendelianae Brun 59:241–246. https://doi.org/10.11118/actaun201159030241

    Article  Google Scholar 

  • Georgiev M, Heinrich M, Kerns G, Bley T, Pavlov A (2006) Production of iridoids and phenolics by transformed Harpagophytum procumbens root cultures. Eng Life Sci 6:593–596. https://doi.org/10.1002/elsc.200620160

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185. https://doi.org/10.1007/s00253-007-0856-5

    Article  CAS  PubMed  Google Scholar 

  • Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. https://doi.org/10.1002/elsc.201300166

    Article  CAS  Google Scholar 

  • Glinwood R, Pettersson J, Ahmed E, Ninkovic V, Birkett M, Picket J (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:261–274. https://doi.org/10.1023/A:1022687025416

    Article  CAS  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17. https://doi.org/10.1016/S0981-9428(00)01212-2

    Article  CAS  Google Scholar 

  • Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961. https://doi.org/10.1002/jobm.201300250

    Article  CAS  PubMed  Google Scholar 

  • Gruber BD, Delhaize E, Richardson AE, Roessner U, James RA, Howitt SM, Ryan PR (2011) Characterisation of HvALMT1 function in transgenic barley plants. Funct Plant Biol 38:163–175. https://doi.org/10.1071/FP10140

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28:1703–1715. https://doi.org/10.1023/A:1020553531658

    Article  CAS  PubMed  Google Scholar 

  • Haghighi M, Mozafariyan M, Abdolahipour B (2015) Effect of cucumber mycorrhiza inoculation under low and high root temperature grown on hydroponic conditions. J Crop Sci Biotechnol 18:89–96. https://doi.org/10.1007/s12892-014-0083-4

    Article  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80. https://doi.org/10.1016/j.soilbio.2014.06.017

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444. https://doi.org/10.1093/jxb/err430

    Article  CAS  PubMed  Google Scholar 

  • Henry A, Doucette W, Norton J, Bugbee B (2007) Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J Environ Qual 36:904–912. https://doi.org/10.2134/jeq2006.0425sc

    Article  CAS  PubMed  Google Scholar 

  • Huang YM, Zou YN, Wu QS (2017) Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci Rep 7:42335. https://doi.org/10.1038/srep42335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can J Bot 77:1311–1315. https://doi.org/10.1139/b99-077

    Article  CAS  Google Scholar 

  • Inceoǧlu Ö, Salles JF, van Overbeek L, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol 76:3675–3684. https://doi.org/10.1128/AEM.00040-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905. https://doi.org/10.1073/pnas.0700117104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805. https://doi.org/10.1038/srep21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PM, George AM (2002) Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci 99:12639–12644. https://doi.org/10.1073/pnas.152439599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33. https://doi.org/10.1007/s11104-009-9925-0

    Article  CAS  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arab B 9:e0153. https://doi.org/10.1199/tab.0153

    Article  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria × ananassa). Hortic Sci 48:563–567

    CAS  Google Scholar 

  • Kato-Noguchi H (2004) Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemical. J Plant Physiol 161:271–276. https://doi.org/10.1078/0176-1617-01188

    Article  CAS  PubMed  Google Scholar 

  • Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11:121. https://doi.org/10.1186/1471-2229-11-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitazawa H, Asao T, Ban T, Pramanik MHR, Hosoki T (2005) Autotoxicity of root exudates from strawberry in hydroponic culture. J Hortic Sci Biotechnol 80:677–680. https://doi.org/10.1080/14620316.2005.11511997

    Article  Google Scholar 

  • Kobayashi Y, Lakshmanan V, Kobayashi Y, Asai M, Iuchi S, Kobayashi M, Bais HP, Koyama H (2013) Overexpression of AtALMT1 in the A. thaliana ecotype Columbia results in enhanced Al-activated malate excretion and beneficial bacterium recruitment. Plant Signal Behav 8:e25565. https://doi.org/10.4161/psb.25565

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuijken RCP, Snel JFH, Heddes MM, Bouwmeester HJ, Marcelis LFM (2015) The importance of a sterile rhizosphere when phenotyping for root exudation. Plant Soil 387:131–142. https://doi.org/10.1007/s11104-014-2283-6

    Article  CAS  Google Scholar 

  • Kuźma Ł, Bruchajzer E, Wysokińska H (2009) Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme Microb Technol 44:406–410. https://doi.org/10.1016/j.enzmictec.2009.01.005

    Article  CAS  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587. https://doi.org/10.1007/s11103-015-0417-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368. https://doi.org/10.1074/jbc.M108777200

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208. https://doi.org/10.5423/PPJ.SI.02.2013.0021

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q (2013) Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8:e63383. https://doi.org/10.1371/journal.pone.0063383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CZ, Wang YC, Ouyang F, Ye HC, Li GF (1997) Production of artemisinin by hairy root cultures of Artemisia annua L. Biotechnol Lett 19:927–929. https://doi.org/10.1023/A:1018362309677

    Article  CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009a) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399. https://doi.org/10.1111/j.1365-313X.2008.03696.x

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Zhou B, Zhao X, Lu B, Li Y, Hao J (2009b) Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates. HortScience 44:2058–2062

    Article  Google Scholar 

  • Liu A, Chen S, Wang M, Liu D, Chang R, Wang Z, Lin X, Bai B, Ahammed GJ (2016) Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings. J Plant Growth Regul 35:109–120. https://doi.org/10.1007/s00344-015-9511-z

    Article  CAS  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184. https://doi.org/10.1016/j.envexpbot.2007.08.002

    Article  CAS  Google Scholar 

  • Luo Q, Sun L, Hu X, Zhou R (2014) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis. PLoS ONE 9:e115581. https://doi.org/10.1371/journal.pone.0115581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Wang S, Sun L, Wang H (2017) Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS. Sci Rep 7:39878. https://doi.org/10.1038/srep39878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161. https://doi.org/10.1038/ng2074

    Article  CAS  PubMed  Google Scholar 

  • Marin JA, Andreu P, Carrasco A, Arbeloa A (2010) Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Rev des Régions Arid 24:722–727

    Google Scholar 

  • Martin BC, Gleeson D, Statton J, Siebers AR, Grierson P, Ryan MH, Kendrick GA (2018) Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02667(Article number 2667)

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruyama H, Sasaki T, Yamammoto Y, Wasaki J (2019) AtALMT3 is involved in malate efflux induced by phosphorus deficiency in arabidopsis thaliana root hairs. Plant Cell Physiol 60(1):107–115. https://doi.org/10.1093/pcp/pcy190

    Article  CAS  PubMed  Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390. https://doi.org/10.1007/s00572-013-0477-z

    Article  CAS  PubMed  Google Scholar 

  • McAlister B, Finnie J, Watt MP, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi forests (SA). Plant Cell Tissue Organ Cult 81:347–358. https://doi.org/10.1007/s11240-004-6658-x

    Article  Google Scholar 

  • Micallef SA, Channer S, Shiaris MP, Colón-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780. https://doi.org/10.1093/jxb/erp053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoliu A, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2009) A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regul 59:179–187. https://doi.org/10.1007/s10725-009-9401-0

    Article  CAS  Google Scholar 

  • Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant 45:450–457. https://doi.org/10.1007/s11627-008-9173-7

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

    Article  PubMed  Google Scholar 

  • Nakayama M, Tateno R (2018) Solar radiation strongly influences the quantity of forest tree root exudates. Trees 32:871–879. https://doi.org/10.1007/s00468-018-1685-0

    Article  CAS  Google Scholar 

  • Neumann G, Bott S, Ohler MA, Mock HP, Lippmann R, Grosch R, Smalla K (2014) Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol 5:1–6. https://doi.org/10.3389/fmicb.2014.00002

    Article  Google Scholar 

  • Oburger E, Gruber B, Schindlegger Y, Schenkeveld WDC, Hann S, Kraemer SM, Wenzel WW, Puschenreiter M (2014) Root exudation of phytosiderophores from soil-grown wheat. New Phytol 203:1161–1174. https://doi.org/10.1111/nph.12868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oburguer E, Jones DL (2018) Sampling root exudates—mission impossible? Rhizosphere 6:116–133. https://doi.org/10.1016/j.rhisph.2018.06.004

    Article  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103(3):1155–1166. https://doi.org/10.1007/s00253-018-9556-6

    Article  CAS  PubMed  Google Scholar 

  • Orelle C, Durmort C, Mathieu K, Duchêne B, Aros S, Fenaille F, André F, Junot C, Vernet T, Jault JM (2018) A multidrug ABC transporter with a taste for GTP. Sci Rep. https://doi.org/10.1038/s41598-018-20558-z(Article number 2309)

    Article  PubMed  PubMed Central  Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult 81:287–300. https://doi.org/10.1007/s11240-004-6648-z

    Article  Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35:877–902. https://doi.org/10.1007/s00344-016-9583-4

    Article  CAS  Google Scholar 

  • Paterson E, Sim A (2000) Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. J Exp Bot 51:1449–1457. https://doi.org/10.1093/jexbot/51.349.1449

    Article  CAS  PubMed  Google Scholar 

  • Pavlov A, Bley T (2006) Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochem 41:848–852. https://doi.org/10.1016/j.procbio.2005.10.026

    Article  CAS  Google Scholar 

  • Pérez Alonso N, Chong-Pérez B, Capote A, Pérez A, Gerth A, Angenon G, Jiménez E (2016) Biotechnological approaches for biomass and cardenolide production in Digitalis purpurea L. Methods Mol Biol 1391(1):81–102. https://doi.org/10.1007/978-1-4939-3332-7_6

    Article  CAS  PubMed  Google Scholar 

  • Pomilio AB, Leicach SR, Grass MY, Ghersa CM, Santoro M, Bitale AA (2000) Constituents of the root exudate of Avena fatua grown under far-infrared-enriched light. Phytochem Anal 11:304–308. https://doi.org/10.1002/1099-1565(200009/10)11:5%3c304:AID-PCA531%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  • Pramanik MHR, Nagai M, Asao T, Matsui Y (2000) Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J Chem Ecol 26:1953–1967. https://doi.org/10.1023/A:1005509110317

    Article  CAS  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2017) Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci 8:1056. https://doi.org/10.3389/fpls.2017.01056

    Article  PubMed  PubMed Central  Google Scholar 

  • Renouard S, Corbin C, Drouet S, Medvedec B, Doussot J, Colas C, Maunit B, Bhambra AS, Gontier E, Jullian N, Mesnard F, Boitel M, Abbasi BH, Arroo RRJ, Lainé E, Hano C (2018) Investigation of Linum flavum (L.) hairy root cultures for the production of anticancer aryltetralin lignans. Int J Mol Sci 19:990. https://doi.org/10.3390/ijms19040990

    Article  CAS  PubMed Central  Google Scholar 

  • Rosier A, Medeiros FHV, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428(1–2):35–55. https://doi.org/10.1007/s11104-018-3679-5

    Article  CAS  Google Scholar 

  • Ruckli R, Hesse K, Glauser G, Rusterholz HP, Baur B (2014) Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera. J Chem Ecol 40:371–378. https://doi.org/10.1007/s10886-014-0421-5

    Article  CAS  PubMed  Google Scholar 

  • Rutto KL, Mizutani F, Kadoya K (2002) Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Sci Hortic 94:285–295. https://doi.org/10.1016/S0304-4238(02)00008-0

    Article  Google Scholar 

  • Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminate Decne grown in different culture systems. Plant Cell Tiss Organ Cult 106:445–454. https://doi.org/10.1007/s11240-011-9942-6

    Article  CAS  Google Scholar 

  • Schreiner M, Krumbein A, Knorr D, Smetanska I (2011) Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate. J Agric Food Chem 59:1400–1405. https://doi.org/10.1021/jf103585s

    Article  CAS  PubMed  Google Scholar 

  • Schrey SD, Hartmann A, Hampp R (2015) Rhizosphere interactions. In: Krauss GJ, Nies DH (eds) Ecological biochemistry: environmental and interspecies interactions, vol 12. Wiley-VCH, Weinheim, pp 292–311. https://doi.org/10.1002/9783527686063.ch15

    Chapter  Google Scholar 

  • Sharma T, Dreyer I, Kochian L, Pineros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7:1488. https://doi.org/10.3389/fpls.2016.01488

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Jha PN (2016) Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Plant 38:2–12. https://doi.org/10.1007/s11738-016-2123-9

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306. https://doi.org/10.3390/12071290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46. https://doi.org/10.1016/j.phytochem.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  • Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clement C, Barka AB, Dhondt-Cordelier S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810. https://doi.org/10.3389/fpls.2015.00810

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H, Tao J, Gu P, Xu G, Zhang Y (2016) The role of strigolactones in root development. Plant Signal Behav 11:e1110662. https://doi.org/10.1080/15592324.2015.1110662

    Article  CAS  PubMed  Google Scholar 

  • Sung LS, Huang SY (2005) Lateral root bridging as a strategy to enhance L-DOPA production in Stizolobium hassjoo hairy root cultures by using a mesh hindrance mist trickling bioreactor. Biotechnol Bioeng 94:441–447. https://doi.org/10.1002/bit.20804

    Article  CAS  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202. https://doi.org/10.1139/W07-082

    Article  CAS  PubMed  Google Scholar 

  • Takanashi K, Shitan N, Yazaki K (2014) The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol 31:417–430. https://doi.org/10.5511/plantbiotechnology.14.0904a

    Article  CAS  Google Scholar 

  • Tawaraya K, Horie R, Saito S, Wagatsuma T, Saito K, Oikawa A (2014a) Metabolite profiling of root exudates of common bean under phosphorus deficiency. Metabolites 4:599–611. https://doi.org/10.3390/metabo4030599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawaraya K, Horie R, Shinano T, Wagatsuma T, Saito K, Oikawa A (2014b) Metabolite profiling of soybean root exudates under phosphorus deficiency. Soil Sci Plant Nutr 60:679–694. https://doi.org/10.1080/00380768.2014.945390

    Article  CAS  Google Scholar 

  • Tharayil N, Triebwasser DJ (2010) Elucidation of a diurnal pattern of catechin exudation by Centaurea stoebe. J Chem Ecol 36:200–204. https://doi.org/10.1007/s10886-010-9749-7

    Article  CAS  PubMed  Google Scholar 

  • Tückmantel T, Leuschner C, Preusser S, Kandeler E, Angst G, Mueller CW, Meier IC (2017) Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment. Soil Biol Biochem 107:188–197. https://doi.org/10.1016/j.soilbio.2017.01.006

    Article  CAS  Google Scholar 

  • Uchendu EE, Paliyath G, Brown DCW, Saxena PK (2011) In vitro propagation of North American ginseng (Panax quinquefolius L.). In Vitro Cell Dev Biol Plant 47:710–718. https://doi.org/10.1007/s11627-011-9379-y

    Article  CAS  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159. https://doi.org/10.1016/j.tplants.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Sánchez J, Nicolás E, Pedrero F, Alarcón JJ, Maestre-Valero JF, Férnandez F (2014) Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24:339–348. https://doi.org/10.1007/s00572-013-0542-7

    Article  CAS  PubMed  Google Scholar 

  • Vílchez S, Molina L, Ramos C, Ramos JL (2000) Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol 182:91–99. https://doi.org/10.1128/JB.182.1.91-99.2000

    Article  PubMed  PubMed Central  Google Scholar 

  • Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2017) Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep 36:1971–1984. https://doi.org/10.1007/s00299-017-2214-0

    Article  CAS  PubMed  Google Scholar 

  • Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2018a) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 37(11):1557–1569. https://doi.org/10.1007/s00299-018-2328-z

    Article  CAS  PubMed  Google Scholar 

  • Vives-Peris V, Molina L, Segura A, Gómez-Cadenas A, Pérez-Clemente RM (2018b) Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria. J Plant Phys 228:208–217. https://doi.org/10.1016/j.jplph.2018.06.003

    Article  CAS  Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Janous D, Formanek P (2013) Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. J Plant Nutr Soil Sci 176:175–199. https://doi.org/10.1002/jpln.201000360

    Article  CAS  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454. https://doi.org/10.1093/jxb/ers054

    Article  CAS  PubMed  Google Scholar 

  • Wilken D, González EJ, Hohe A, Jordan M, Kosky RG, Hirschmann GS, Gerth A (2005) Comparison of secondary plant metabolite production in cell suspension, callus culture and temporary immersion system. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture system for in vitro plant propagation. Springer, Dordrecht, pp 525–537. https://doi.org/10.1007/1-4020-3200-5_39

    Chapter  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3:90–100. https://doi.org/10.1079/PGR200575

    Article  CAS  Google Scholar 

  • Xu W, Liu D, Wu F, Liu S (2015) Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. Eur J Plant Pathol 141:209–216. https://doi.org/10.1007/s10658-014-0528-0

    Article  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069. https://doi.org/10.1111/j.1365-313X.2011.04757.x

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:105. https://doi.org/10.1186/s12870-016-0791-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Mao ZQ, Wang LQ, Shu HR (2007) Bioassay and identification of root exudates of three fruit tree species. J Integr Plant Biol 49:257–261. https://doi.org/10.1111/j.1744-7909.2007.00307.x

    Article  CAS  Google Scholar 

  • Zhang HC, Liu JM, Chen HM, Gao CC, Lu HY, Zhou H, Li Y, Gao SL (2011) Up-regulation of licochalcone A biosynthesis and secretion by Tween 80 in hairy root cultures of Glycyrrhiza uralensis Fisch. Mol Biotechnol 47:50–56. https://doi.org/10.1007/s12033-010-9311-4

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Delhaize E, Zhou M, Ryan PR (2013) The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley. Ann Bot 112:603–612. https://doi.org/10.1093/aob/mct135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Pereira JF, Delhaize E, Zhou M, Magalhaes JV, Ryan PR (2014) Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. J Exp Bot 65:2381–2390. https://doi.org/10.1093/jxb/eru121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Song F, Liu S, Liu F (2016) Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2. J Agron Crop Sci 202:486–496. https://doi.org/10.1111/jac.12175

    Article  CAS  Google Scholar 

  • Ziv M (2005) Simple bioreactors for mass propagation of plants. Plant Cell Tissue Organ Cult 81:277–285. https://doi.org/10.1007/s11240-004-6649-y

    Article  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4