A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00259-007-0706-9 below:

MR Microimaging of amyloid plaques in Alzheimer’s disease transgenic mice

Abstract Introduction

Alzheimer’s disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process.

Discussion and conclusion

Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, et al. Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 2002;11:315–29.

    Article  PubMed  CAS  Google Scholar 

  2. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002;10:24–35.

    PubMed  Google Scholar 

  3. Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003;50:293–302.

    Article  PubMed  CAS  Google Scholar 

  4. Jack CR Jr., Garwood M, Wengenack TM, Borowski BJ, Curran GL, Lin J, et al. In vivo visualization of Alzheimer’s amyloid plaques by MRI in transgenic mice without a contrast agent. Magn Reson Med 2004;52:1263–71.

    Article  PubMed  Google Scholar 

  5. Jack CR Jr., Wengenack TM, Reyes DA, Garwood M, Curran GL, Borowski BJ, et al. In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 2005;25:10041–8.

    Article  PubMed  CAS  Google Scholar 

  6. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306–19.

    Article  PubMed  CAS  Google Scholar 

  7. Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 2004;12:584–95.

    PubMed  Google Scholar 

  8. Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA. Histological co-localization of iron in A-beta plaques of PS/APP transgenic mice. Neurochem Res 2005;30:201–5.

    Article  PubMed  CAS  Google Scholar 

  9. Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der Linden A. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 2005;53:607–13.

    Article  PubMed  CAS  Google Scholar 

  10. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 1998;4:97–100.

    Article  PubMed  CAS  Google Scholar 

  11. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996;274:99–102.

    Article  PubMed  CAS  Google Scholar 

  12. Wengenack TM, Whelan SL, Curran GL, Duff KE, Poduslo JF. Quantitative histological analysis of amyloid deposition in Alzheimer’s double transgenic mouse brain. Neurosci 2000a;101:939–44.

    Article  CAS  Google Scholar 

  13. Robb RA. A software system for interactive and quantitative analysis of biomedical images. In: Hohne KH, Fuchs H, Pizer SM, editors. 3D imaging in medicine. vol 60. Berlin-Heidelberg: Springer Verlag; 1990. p. 333–61.

    Google Scholar 

  14. LeVine SM. Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res 1997;760:298–303.

    Article  PubMed  CAS  Google Scholar 

  15. Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci U S A 1999;96:14079–84.

    Article  PubMed  CAS  Google Scholar 

  16. Dhenain M, Privat N, Duyckaerts C, Jacobs RE. Senile plaques do not induce susceptibility effects in T2 *- weighted MR microscopic images. NMR Biomed 2002;15:197–203.

    Article  PubMed  Google Scholar 

  17. LeVine SM. Oligodendrocytes and myelin sheaths in normal, quaking, and shiverer brains are enriched in iron. J Neurosci 1991;29:413–9.

    Article  CAS  Google Scholar 

  18. Maggio JE, Stimson ER, Ghilardi JR, Allen CJ, Dahl CE, Whitcomb DC, et al. Reversible in vitro growth of Alzheimer disease beta-amyloid plaques by deposition of labeled amyloid peptide. Proc Natl Acad Sci U S A 1992;89(12):5462–6.

    Article  PubMed  CAS  Google Scholar 

  19. Ghilardi JR, Catton M, Stimson ER, Rogers S, Walker LC, Maggio JE, et al. Intra-arterial infusion of [125I]A beta 1–40 labels amyloid deposits in the aged primate brain in vivo. Neuroreport 1996;7(15–17):2607–11.

    Article  PubMed  CAS  Google Scholar 

  20. Poduslo JF, Curran GL. Polyamine modification increases the permeability of proteins at the blood–nerve and blood–brain barriers. J Neurochem 1996;66:1599–609.

    PubMed  CAS  Google Scholar 

  21. Wengenack TM, Curran GL, Poduslo JF. Targeting Alzheimer amyloid plaques in vivo. Nat Biotechnol 2000b;18(8):868–72.

    Article  PubMed  CAS  Google Scholar 

  22. Wengenack TM, Curran GL, Poduslo JF. Postischemic, systemic administration of polyamine-modified superoxide dismutase reduces hippocampal CA1 neurodegeneration in rat global cerebral ischemia. Brain Res 1997;754(1–2):46–54.

    Article  PubMed  CAS  Google Scholar 

  23. Poduslo JF, Curran GL, Gill JS. Putrescine-modified nerve growth factor: bioactivity, plasma pharmacokinetics, blood–brain/nerve barrier permeability, and nervous system biodistribution. J Neurochem 1998;71(4):1651–60.

    Article  PubMed  CAS  Google Scholar 

  24. Reinholz MM, Merkle CM, Poduslo JF. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol 1999;159(1):204–16.

    Article  PubMed  CAS  Google Scholar 

  25. Poduslo JF, Curran GL, Peterson JA, McCormick DJ, Fauq AH, Khan MA, et al. Design and chemical synthesis of a magnetic resonance contrast agent with enhanced in vitro binding, high blood–brain barrier permeability, and in vivo targeting to Alzheimer’s disease amyloid plaques. Biochem 2004;43(20):6064–75.

    Article  CAS  Google Scholar 

  26. Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood–nerve and blood–brain barriers. Proc Natl Acad Sci U S A 1994;91:5705–9.

    Article  PubMed  CAS  Google Scholar 

  27. Poduslo JF, Ramakrishnan M, Holasek SS, Ramirez-Alvarado M, Kandimalla KK, Gilles EJ, et al. In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J Neurochem 2007;102(2):420–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants AG22034 (JFP), P41 RR008079 (MG), and P30 NS057091 (MG), and the Minnesota Partnership for Biotechnology and Medical Genomics.

Conflict of interest statement

The authors declare that they have no relevant financial or any other interests in this manuscript.

Author information Authors and Affiliations
  1. Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience, and Biochemistry/Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA

    Thomas M. Wengenack & Joseph F. Poduslo

  2. Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA

    Clifford R. Jack Jr.

  3. Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, 55455, USA

    Michael Garwood

  4. Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA

    Michael Garwood

Authors
  1. Thomas M. Wengenack
  2. Clifford R. Jack Jr.
  3. Michael Garwood
  4. Joseph F. Poduslo
Corresponding author

Correspondence to Joseph F. Poduslo.

About this article Cite this article

Wengenack, T.M., Jack, C.R., Garwood, M. et al. MR Microimaging of amyloid plaques in Alzheimer’s disease transgenic mice. Eur J Nucl Med Mol Imaging 35 (Suppl 1), 82–88 (2008). https://doi.org/10.1007/s00259-007-0706-9

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4