A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00253-004-1600-z below:

Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application

  • Abad LR, D’Urzo MP, Narasimhan ML, Reuveni M, Zhu JK, Niu X, Singh NK, Haegawa PM, Bressan RA (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118:11–23

    Article  CAS  Google Scholar 

  • Abrami L, Liu S, Cosson P, Leppla SH, Goot FG van der (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL, Goldstein SA (1999) A molecular target for viral killer toxin: TOK1 potassium channel. Cell 99:283–291

    CAS  PubMed  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant–microbe interactions. Science 276:726–733

    CAS  PubMed  Google Scholar 

  • Ballance DJ (1986) Sequences important for gene expression in filamentous fungi. Yeast 2:229–236

    CAS  PubMed  Google Scholar 

  • Bormann C, Baier D, Horr I, Raps C, Berger J, Jung G, Schwarz H (1999) Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tu901 that interferes with growth polarity. J Bacteriol 181:7421–7429

    CAS  PubMed  Google Scholar 

  • Brackhage AA, Adrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ (1999) HAP-like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 27:243–252

    CAS  PubMed  Google Scholar 

  • Bradley KA, Young JAT (2003) Anthrax toxin receptor proteins. Biochem Pharmacol 65:309–314

    Article  CAS  PubMed  Google Scholar 

  • Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405

    CAS  PubMed  Google Scholar 

  • Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    CAS  PubMed  Google Scholar 

  • Campos-Olivas R, Bruix M, Santoro J, Lacadena J, Matrinez del Pozo A, Gavilanes JG, Rico M (1995) NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry 34:3009–3021

    CAS  PubMed  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245

    CAS  PubMed  Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415

    CAS  PubMed  Google Scholar 

  • Denning DW (1991) Epidemiology and pathogenesis of systemic fungal infections in the immunocompromised host. J Antimicrob Chemother 28:1–16

    Google Scholar 

  • De la Pena P, Barros F, Gascon S, Lazo PS, SR (1981) Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem 256:10420–10425

    PubMed  Google Scholar 

  • De Samblanx GW, Fernandez del Carmen A, Sijtsma L, Schaaper WM, Posthuma GA, Fant F, Meloen RH, Broekaert WF, Amerongen A van (1997) Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem 272:1171–1179

    PubMed  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    CAS  PubMed  Google Scholar 

  • Dupont B, Crewe Brown HH, Westermann K, Martins MD, Rex JH, Lortholary J, Kauffmann CA (2000) Mycoses in AIDS. Med Mycol 38:259–267

    PubMed  Google Scholar 

  • Eisfeld K, Riffer F, Mentges J, Schmitt MJ (2002) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37:926–940

    Article  Google Scholar 

  • Endo Y, Oka T, Yokota S, Tsurugi K, Natori Y (1993) The biosynthesis of a cytotoxic protein, alpha-sarcin, in a mold of Aspergillus giganteus. II. Maturation of precursor form of alpha-sarcin in vivo. Tokushima J Exp Med 40:7–12

    CAS  PubMed  Google Scholar 

  • Epand RM, Vogel JH (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    CAS  PubMed  Google Scholar 

  • Epand RF, Umezawa N, Porter EA, Gellman SH, Epand RM (2003) Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins. Eur J Biochem 270:1240–1248

    CAS  PubMed  Google Scholar 

  • Falnes PO, Sandvig K (2000) Penetration of toxins into cells. Curr Opin Cell Biol 12:407–413

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Luna JL, Lopez-Otin C, Soriano F, Mendez E (1985) Complete amino acid sequence of the Aspergillus cytotoxin mitogillin. Biochemistry 24:861–867

    CAS  PubMed  Google Scholar 

  • Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    Article  CAS  PubMed  Google Scholar 

  • Fritig B, Heitz T, Legrand M (1998) Antimicrobial proteins in induced plant defense. Curr Opin Immunol 10:16–22

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (1994) Biosynthesis of defensins and other antimicrobial peptides. Ciba Found Symp 186:62–71

    CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491

    CAS  PubMed  Google Scholar 

  • Gasset M, Mancheno JM, Lacadena J, Turnay J, Olmo N, Lizarbe MA, Martinez del Pozo A, Onaderra M, Gavilanes JG (1994) Alpha-sarcin, a ribosome-inactivating protein that translocates across the membrane of phospholipid vesicles. Curr Top Pept Protein Res 1:99–104

    Google Scholar 

  • Geisen R (2000) P. nalgiovense carries a gene which is homologous to the paf gene of P. chrysogenum which codes for an antifungal peptide. Int J Food Microbiol 62:95–101

    Google Scholar 

  • Graessle S, Haas H, Friedlin E, Kürnsteiner H, Stöffler G, Redl B (1997) Regulated system for heterologous gene expression in Penicillium chrysogenum. Appl Environ Microbiol 63:753–756

    Google Scholar 

  • Gupte M, Kulkarni P, Ganguli BN (2002) Antifungal antibiotics. Appl Microbiol Biotechnol 58:46–57

    CAS  PubMed  Google Scholar 

  • Hao JJ, Ye JQ, Yang Q, Gong ZZ, Liu WY, Wang ED (2000) A silent antifungal protein (AFP)-like gene lacking two introns in the mould Trichoderma viride. Biochim Biophys Acta 1475:119–124

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 12:1422–1432

    Google Scholar 

  • Hejgaard J, Jacobsen S, Svendsen I (1991) Two antifungal thaumatin-like proteins from barley grain. FEBS Lett 291:127–131

    Article  CAS  PubMed  Google Scholar 

  • Helmerhorst EJ, Breeuwer P, Hof W van’t, Walgreen-Wterings E, Oomen LCJM, Veerman ECI, Amerongen AVN, Abee T (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274:7286–7291

    Article  CAS  PubMed  Google Scholar 

  • Hibberd PL, Rubin RH (1994) Clinical aspects of fungal infection in organ transplant recipients. Clin Infect Dis 19:S33–S40

    PubMed  Google Scholar 

  • Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J (2003) Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob Agents Chemother 47:2804–2809

    Article  CAS  PubMed  Google Scholar 

  • Hughes P, Dennis E, Whitecross M, Llewellyn D, Gage P (2000) The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J Biol Chem 275:823–827

    Article  CAS  PubMed  Google Scholar 

  • Inouye M (1991) Intramolecular chaperone: the role of the propeptide in protein folding. Enzymes 45:314–321

    CAS  Google Scholar 

  • Jacobs MJ (1995) The regulation of expression of a gene encoding an antifungal protein of Aspergillus giganteus and its heterologous expression in yeast and plant. PhD thesis, Berlin University of Technology, Berlin

  • Jalving R, Vondervoort PJ van de, Visser J, Schaap PJ (2000) Characterization of the kexin-like maturase of Aspergillus niger. Appl Environ Microbiol 66:363–368

    CAS  PubMed  Google Scholar 

  • Kaiserer L, Oberparleiter C, Weiler-Goerz R, Burgstaller W, Leiter E, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180:204–210

    Article  CAS  PubMed  Google Scholar 

  • Kamysz W, Okroj M, Lukasiak J (2003) Novel properties of antimicrobial peptides. Acta Biochim Pol 50:461–469

    CAS  PubMed  Google Scholar 

  • Kinal H, Park CM, Berry JO, Koltin Y, Bruenn JA (1995) Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants. Plant Cell 7:677–688

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat-shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13:248–256

    CAS  PubMed  Google Scholar 

  • Kozlov YV, Kabishev AA, Fedchenko VI (1987) Cloning and sequencing of Shiga toxin structural genes. Proc Natl Acad Sci USSR 295:740–744

    CAS  Google Scholar 

  • Kulmburg P, Mathieu M, Dowzer D, Kelly J, Felenbok B (1993) Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857

    PubMed  Google Scholar 

  • Lacadena J, Martinez del Pozo A, Gasset M, Patino B, Campos-Olivas R, Vazquez C, Martinez-Ruiz A, Mancheno JM, Onaderra M, Gavilanes JG (1995) Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 324:273–281

    CAS  PubMed  Google Scholar 

  • Lamb FI, Roberts LM, Lord JM (1985) Nucleotide sequence of cloned cRNA coding for preproricin. Eur J Biochem 148:265–270

    CAS  PubMed  Google Scholar 

  • Lamy B, Davies J (1991) Isolation and nucleotide sequence of the Aspergillus restrictus gene coding for the ribonucleolytic toxin restrictocin and its expression in Aspergillus nidulans: the leader sequence protects producing strains from suicide. Nucleic Acids Res 19:1001–1006

    CAS  PubMed  Google Scholar 

  • Lamy B, Davies J, Schindler D (1992) The Aspergillus ribonucleolytic toxins (ribotoxins). Targeted Diagn Ther 7:237–258

    CAS  PubMed  Google Scholar 

  • Lee GD, Shin SY, Maeng CY, Jin ZZ, Kim KL, Hahm KS (1999) Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun 263:646–651

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Park Y, Kim HN, Kim HK, Kim PI, Choi BH, Hahm KS (2002) Antifungal mechanism of an antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem Biophys Res Commun 291:1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Lehrer R, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11:23–27

    CAS  PubMed  Google Scholar 

  • Leppla SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    CAS  PubMed  Google Scholar 

  • Levitz SM (1992) Overview of host defenses in fungal infections. Clin Infect Dis 14:S37–S42

    PubMed  Google Scholar 

  • Marr KA, Patterson T, Denning D (2002) Aspergillosis. Pathogenesis, clinical manifestations, and therapy. Infect Dis Clin North Am 16:875–894

    Google Scholar 

  • Martinac B, Zhu H, Kubalski A, Zhou XL, Culbertson M, Bussey H, Kung C (1990) Yeast K1 Killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci USA 87:6228–6232

    CAS  PubMed  Google Scholar 

  • Martinez-Ruiz A, Martinez del Pozo A, Lacadena J, Mancheno JM, Onaderra M, Gavilanes JG (1997) Characterization of a natural larger form of the antifungal protein (AFP) from Aspergillus giganteus. Biochim Biophys Acta 1340:81–87

    CAS  PubMed  Google Scholar 

  • Martinez Del Pozo A, Lacadena V, Mancheno JM, Olmo N, Onaderra M, Gavilanes JG (2002) The antifungal protein AFP of Aspergillus giganteus is an OB fold-containing protein that produces condensation of DNA. J Biol Chem 277:46179–46183

    Article  PubMed  Google Scholar 

  • Marx F, Haas H, Reindl M, Stoffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167–171

    Article  CAS  PubMed  Google Scholar 

  • Meyer V, Stahl U (2002) New insights in the regulation of the afp gene encoding the antifungal protein of Aspergillus giganteus. Curr Genet 42:36–42

    Article  CAS  PubMed  Google Scholar 

  • Meyer V, Stahl U (2003) The influence of co-cultivation on expression of the antifungal protein in Aspergillus giganteus. J Basic Microbiol 43:68–74

    Article  CAS  PubMed  Google Scholar 

  • Meyer V, Wedde M, Stahl U (2002) Transcriptional regulation of the antifungal protein in Aspergillus giganteus. Mol Genet Genomics 266:747–757

    CAS  PubMed  Google Scholar 

  • Montesano R, Roth J, Robert A, Orci L (1982) Non-coated membrane invaginations are involved in binding internalization of cholera and tetanus toxins. Nature 296:651–653

    CAS  PubMed  Google Scholar 

  • Murphy OM, Gould FK (1999) Prevention of nosocomial infection in solid organ transplantation. J Hosp Infect 42:177–183

    Article  CAS  PubMed  Google Scholar 

  • Nakaya K, Omata K, Okahashi I, Nakamura Y, Kolekenbrock H, Ulbrich N (1990) Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193:31–38

    CAS  PubMed  Google Scholar 

  • Nissen-Meyer J, Nes IF (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167:67–77

    Article  CAS  Google Scholar 

  • Oberparleiter C, Kaiserer L, Haas H, Ladurner P, Andratsch M, Marx F (2003) Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive aspergilli. Antimicrob Agents Chemother 47:3598–3601

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Natori Y, Tanaka S, Tsurugi K, Endo Y (1990) Complete nucleotide sequence of cDNA for the cytotoxin alpha sarcin. Nucleic Acids Res 18:1897

    CAS  PubMed  Google Scholar 

  • Oldach KH, Becker D, Lorz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838

    CAS  PubMed  Google Scholar 

  • Olmo N, Trunay J, Gonzales de Buitrago G, Lopez de Silanes I, JG G, Lizarbe MA (2001) Cytotoxic mechanism of the ribotoxin α-sarcin. Eur J Biochem 268:2113–2123

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47:451–463

    CAS  PubMed  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    CAS  PubMed  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499

    Article  CAS  PubMed  Google Scholar 

  • Park CM, Berry JO, Bruenn JA (1996) High-level secretion of a virally encoded anti-fungal toxin in transgenic tobacco plants. Plant Mol Biol 30:359–366

    CAS  PubMed  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    CAS  PubMed  Google Scholar 

  • Pocsi I, Sami L, Leiter E, Majoros L, Szabo B, Emri T, Pusztahelyi T (2001) Searching for new-type antifungal drugs. Acta Microbiol Immunol Hung 48:533–543

    CAS  PubMed  Google Scholar 

  • Punt PJ, Drint-Kuijvenhoven A, Lokman BC, Spencer JA, Jeenes D, Archer DA, Hondel CAMJJ van den (2003) The role of the Aspergillus niger furin-type protease gene in processing of fungal proproteins and fusion proteins. Evidence for alternative processing of recombinant (fusion-)proteins. J Biotechnol 106:23–32

    Article  CAS  PubMed  Google Scholar 

  • Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206:9–18

    CAS  PubMed  Google Scholar 

  • Riffer F, Eisfeld K, Breinig F, Schmitt MJ (2002) Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae. Microbiology 148:1317–1328

    CAS  PubMed  Google Scholar 

  • Sandvig K, Grimmer S, Lauvrak SU, Torgersen ML, Skretting G, Deurs B van, Iversen TG (2002) Pathways followed by ricin and Shiga toxin into cells. Histochem Cell Biol 117:131–141

    Article  CAS  PubMed  Google Scholar 

  • Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:126–131

    CAS  PubMed  Google Scholar 

  • Schaaper WM, Posthuma GA, Plaman HH, Sijtsma L, Fant F, Borremans F, Thevissen K, Broekaert W, Meloen RH, Amerongen A van (2001) Synthetic peptides derived from the beta2–beta3 loop of Raphanus sativus antifungal protein 2 that mimic the active site. J Pept Res 57:409–418

    Article  CAS  PubMed  Google Scholar 

  • Schindler DG, Davies JE (1977) Specific cleavage of ribosomal RNA caused by alpha-sarcin. Nucleic Acids Res 4:1097–1110

    CAS  PubMed  Google Scholar 

  • Schmitt MJ, Breinig F (2002) The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Lett 26:257–276

    Article  CAS  Google Scholar 

  • Schmitt MJ, Klavehn P, Wang J, Schonig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142:2655–2662

    CAS  PubMed  Google Scholar 

  • Sefton AM (2002) Mechanisms of antimicrobial resistance: their clinical relevance in the new millennium. Drugs 62:557–566

    Google Scholar 

  • Seidah NG, Chretien M (1997) Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Microbiol 8:602–607

    Article  CAS  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Google Scholar 

  • Skretting G, Torgersen ML, Deurs B van, Sandvig K (1999) Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J Cell Sci 112:3899–3909

    CAS  PubMed  Google Scholar 

  • Steinbach WJ, Stevens DA (2003) Review of newer antifungal and immunomodulatory strategies for invasive aspergillosis. Clin Infect Dis 37:S157–S187

    Article  CAS  PubMed  Google Scholar 

  • Strockbine NA, Jackson MP, Sung LM, Holmes RK, O’Brien A (1988) Cloning and sequencing of the genes for Shiga toxin from Shigella dysenteriae type 1. J Bacteriol 170:1116–1122

    CAS  PubMed  Google Scholar 

  • Takahashi S, Ueda M, Tanaka A (2001) Function of the prosequence for in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 55:454–462

    Article  CAS  PubMed  Google Scholar 

  • Tao J, Ginsberg I, Banerjee N, Held W, Koltin Y, Bruenn JA (1990) Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol Cell Biol 10:1373–1381

    CAS  PubMed  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, Leuven F van, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309

    CAS  PubMed  Google Scholar 

  • Terras FR, Torrekens S, Leuven F van, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett 316:233–240

    CAS  PubMed  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455

    CAS  PubMed  Google Scholar 

  • Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–593

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    CAS  PubMed  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem 272:32176–32181

    CAS  PubMed  Google Scholar 

  • Thevissen K, Terras FR, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    CAS  PubMed  Google Scholar 

  • Thevissen K, Francois IEJA, Takemoto JY, Ferket KK, Meert EMK, Cammue BP (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226:169–173

    Article  CAS  PubMed  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid-and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    CAS  PubMed  Google Scholar 

  • Toone WM, Jones N (1998) Stress-activated signalling pathways in yeast. Genes Cells 3:485–498

    Article  CAS  PubMed  Google Scholar 

  • Torralba S, Heath BI (2002) Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. Fungal Genet Biol 37:221–232

    Article  PubMed  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  CAS  PubMed  Google Scholar 

  • Vanholder R, Van Biesen W (2002) Incidence of infectious morbidity and mortality in dialysis patients. Blood Purif 20:477–480

    Article  CAS  PubMed  Google Scholar 

  • Vila L, Lacadena V, Fontanet P, Martinez del Pozo A, San Segundo B (2001) A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol Plant Microbe Interact 14:1327–1331

    CAS  PubMed  Google Scholar 

  • Vollebregt AWH, Van Solingen P, Bovernberg RAL (1994) Isolation and characterization of gene Y of Penicillium chrysogenum: close relation of the gene product to the antifungal protein of Aspergillus giganteus. Abstr Eur Conf Fungal Genet 2

    Google Scholar 

  • Walsh TJ, Pizzo A (1988) Treatment of systemic fungal infections: recent progress and current problems. Eur J Clin Microbiol Infect Dis 7:460–475

    CAS  PubMed  Google Scholar 

  • Westerhoff HV, Juretic D, Hendler RW, Zasloff M (1989) Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 86:6597–6601

    CAS  PubMed  Google Scholar 

  • Wnendt S, Felske-Zech H, Henze PPC, Ulbrich N, Stahl U (1993) Characterization of the gene encoding alpha-sarcin, a ribosome-inactivating protein secreted by Aspergillus giganteus. Gene 124:239–244

    Article  CAS  PubMed  Google Scholar 

  • Wnendt S, Ulbrich N, Stahl U (1994) Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus. Curr Genet 25:519–523

    CAS  PubMed  Google Scholar 

  • Wool IG, Glück A, Endo Y (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci 17:266–269

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Gong ZZ (2003) Intron requirement for AFP gene expression in Trichoderma viride. Microbiology 149:3093–3097

    Article  CAS  PubMed  Google Scholar 

  • Yamashita RA, May GS (1998) Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J Biol Chem 273:14644–14648

    Article  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4