A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00220-004-1237-x below:

Solutions of the Einstein Constraint Equations with Apparent Horizon Boundaries

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

References
  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    MATH  Google Scholar 

  2. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    MATH  Google Scholar 

  3. Brill, D., Lindquist, R.W.: Interaction energy in geometrostatics. Phys. Rev. (2) 131, 471–476 (1963)

    Google Scholar 

  4. Cantor, M.: Some problems of global analysis on asymptotically simple manifolds. Compositio Math. 38, 3–35 (1979)

    MATH  Google Scholar 

  5. Cantor, M., Brill, D.: The Laplacian on asymptotically flat manifolds and the specification of scalar curvature. Compositio Math. 43(3), 317–330 (1981)

    MATH  Google Scholar 

  6. Choquet-Bruhat, Y.: Einstein constraints on compact n-dimensional manifolds. Class. Quantum Grav. 21, S127–S151 (2004)

    Google Scholar 

  7. Choquet-Bruhat, Y., Christodoulou, D.: Elliptic systems in H s δ spaces on manifolds which are Euclidean at infinity. Acta. Math. 146, 129–150 (1981)

    MATH  Google Scholar 

  8. Choquet-Bruhat, Y. Isenberg, J., York, Jr J.W.: Einstein constraints on asymptotically Euclidean manifolds. Phys. Rev. D 61, 1–20 (2000)

    Google Scholar 

  9. Choquet-Bruhat, Y., York, Jr J.W.: The Cauchy problem. In: Held, A., (ed.), General Relativity and Gravitation. New York: Plenum, 1980

  10. Cook, G.B.: Initial data for numerical relativity. Living Rev. 5, 2000 [http://www.livingreviews.org/lrr-2000-5]

  11. Cook, G.B.: Corotating and irrotatinal binary black holes in quasi-circular orbits. Phys. Rev. D 65, 084003 (2002)

    Article  Google Scholar 

  12. Christodoulou, D., O’Murchadha, N.: The Boost Problem in General Relativity. Commun. Math. Phys. 80, 271–300 (1981)

    MATH  Google Scholar 

  13. Dain, S.: Initial data for black hole collisions In: L. Gutierrez, J. Alberto, (eds.), Gravitational and Cosmology. Proc. of Spanish Relativity Meeting ERE-2002, Barcelona: Univ. de Barcelona, 2003

  14. Dain, S.: Trapped Surfaces as Boundaries for the Constraint Equations Class. Quantom Grav. 21, 555–573 (2004)

    Article  MATH  Google Scholar 

  15. Eardley, D.M.: Black hole boundary conditions and coordinate conditions. Phys. Rev. D 57(4), 2299–2304 (1998)

    Article  Google Scholar 

  16. Escobar, J.F.: The Yambe problem on manifolds with boundary. J. Differ. Geom. 35, 21–84 (1992)

    MATH  Google Scholar 

  17. Hörmander, L.: Analysis of linear partial differential operators. Vol. III, Berlin: Springer-Verlag, 1985

  18. Isenberg, J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12, 2249–2274 (1995)

    Article  MATH  Google Scholar 

  19. Kulkarni, R.S., Pinkall, U.: Conformal Geometry. Wiesbaden: Friedr. Vieweg & Sohn, 1988

  20. Klainerman, S., Rodnianski, I.: Rough solutions of the Einstein vacuum equations C. R. Acad. Sci. Paris Sér. I Math. 334, 125–130 (2002)

    MATH  Google Scholar 

  21. Lichernowicz, A.: Sur l’intégration des équations d’Einstein. J. Math. Pures Appl. 23, 26–63 (1944)

    Google Scholar 

  22. Lockhart, R.B., McOwen, R.C.: Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12(4), 409–447 (1985)

    MATH  Google Scholar 

  23. McOwen, R.C.: The behavior of the Laplacian on weighted Sobolev spaces. Commun. Pure Appl. Math. 32, 783–795 (1979)

    MATH  Google Scholar 

  24. Misner, C.: The method of images in geometrostatics. Ann. Phys. 24, 102–117 (1963)

    Article  MATH  Google Scholar 

  25. Moncrief, V., Isenberg, J.: A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Qunatum Grav. 13, 1819–1847 (1996)

    Article  MATH  Google Scholar 

  26. Schechter, M.: Principles of functional analysis. Providence, Rhode Island: Americal Mathematical Society, 2002

  27. Smith, H., Tataru, D.: Sharp local well posedness results for the nonlinear wave equation. To appear Ann. Math.

  28. Thornburg, J.: Coordinates and boundary conditions for the general relativistic initial data problem. Class. Quantum Grav. 4, 1119–1131 (1987)

    Article  Google Scholar 

  29. Trudinger, N.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27, 265–308 (1973)

    MATH  Google Scholar 

  30. Wald, R.M.: General relativity. Chicago: The University of Chicago Press, 1984

  31. York, Jr J.W., Bowen, J.M.: Time-asymmetric initial data for black holes and black hole collisions. Phys. Rev. D 24(8), 2047–2056 (1980)

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4