A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/doi/10.1007/s00213-020-05648-z below:

The psychoactive aminoalkylbenzofuran derivatives, 5-APB and 6-APB, mimic the effects of 3,4-methylenedioxyamphetamine (MDA) on monoamine transmission in male rats

  • Adamowicz P, Zuba D, Byrska B (2014) Fatal intoxication with 3-methyl-N-methylcathinone (3-MMC) and 5-(2-aminopropyl)benzofuran (5-APB). Forensic Sci Int 245:126–132. https://doi.org/10.1016/j.forsciint.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203. https://doi.org/10.1038/npp.2011.304

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Clark RD, Woolverton WL, Wee SM, Blough BE, Rothman RB (2011) In vivo effects of amphetamine analogs reveal evidence for serotonergic inhibition of mesolimbic dopamine transmission in the rat. J Pharmacol Exp Ther 337:218–225. https://doi.org/10.1124/jpet.110.176271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Srihari RT, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive “bath salts” products. Neuropsychopharmacology 38:552–562. https://doi.org/10.1038/npp.2012.204

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Volkow ND (2016) Abuse of new psychoactive substances: threats and solutions. Neuropsychopharmacology 41:663–665. https://doi.org/10.1038/npp.2015.260

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Wang XY, Rothman RB (2007) 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology 189:407–424. https://doi.org/10.1007/s00213-006-0322-6

    Article  CAS  PubMed  Google Scholar 

  • Bonci A, Bernardi G, Grillner P, Mercuri NB (2003) The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction? Trends Pharmacol Sci 24:172–177. https://doi.org/10.1016/S0165-6147(03)00068-3

    Article  CAS  PubMed  Google Scholar 

  • Brandt SD, Baumann MH, Partilla JS, Kavanagh PV, Power JD, Talbot B, Twamley B, O’Brien J, Mahony O, Elliott SP, Archer RP, Patrick J, Singh K, Dempster NM, Cosbey SH (2014a) Characterization of a novel and potentially lethal designer drug, (±)-cis-para-methyl-4-methylaminorex (4,4′-DMAR, or 'Serotoni'). Drug Test Anal 6:684–695. https://doi.org/10.1002/dta.1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt SD, King LA, Evans-Brown M (2014b) The new drug phenomenon. Drug Test Anal 6:587–597. https://doi.org/10.1002/dta.1686

    Article  CAS  PubMed  Google Scholar 

  • Briner K, Burkhart JP, Burkholder TP, Fisher MJ, Gritton WH, Kohlman DT, Liang SX, Miller SC, Mullaney JT, Xu Y-C, Xu Y (2000) Aminoalkylbenzofurans as serotonin (5-HT(2C)) agonists. Patent no. WO2000044737A1, Eli Lilly and Company, Indianapolis, IN, USA, 2000

  • Briner K, Burkhart JP, Burkholder TP, Fisher MJ, Gritton WH, Kohlman DT, Liang SX, Miller SC, Mullaney JT, Xu YC (2006) Aminoalkylbenzofurans as serotonin (5-HT(2C)) agonists. Patent no. US7045545B1, Eli Lilly and Company, Indianapolis, IN, USA, 2006

  • Brunt TM, Nagy C, Bücheli A, Martins D, Ugarte M, Beduwe C, Ventura Vilamala M (2017) Drug testing in Europe: monitoring results of the Trans European Drug Information (TEDI) project. Drug Test Anal 9:188–198. https://doi.org/10.1002/dta.1954

    Article  CAS  PubMed  Google Scholar 

  • Casale JF, Hays PA (2012) The characterization of 6-(2-aminopropyl)benzofuran and differentiation from its 4-, 5-, and 7-positional analogues. Microgram J 9:61–74

    CAS  Google Scholar 

  • Cha HJ, Lee KW, Eom JH, Kim YH, Shin J, Yun J, Han K, Kim HS (2016) 5-(2-Aminopropyl)benzofuran and phenazepam demonstrate the possibility of dependence by increasing dopamine levels in the brain. Pharmacol Biochem Behav 149:17–22. https://doi.org/10.1016/j.pbb.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  • Chan WL, Wood DM, Hudson S, Dargan PI (2013) Acute psychosis associated with recreational use of benzofuran 6-(2-aminopropyl)benzofuran (6-APB) and cannabis. J Med Toxicol 9:278–281. https://doi.org/10.1007/s13181-013-0306-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Daveluy A, Géniaux H, Eiden C, Boucher A, Chenaf C, Deheul S, Spadari M, Gérardin M, Miremont-Salamé G, Haramburu F, French Network of Addictovigilance Centres (2016) Illicit drugs or medicines taken by parachuting. Fundam Clin Pharmacol 30:185–190. https://doi.org/10.1111/fcp.12172

    Article  CAS  PubMed  Google Scholar 

  • Dawson P, Opacka-Juffry J, Moffatt JD, Daniju Y, Dutta N, Ramsey J, Davidson C (2014) The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 48:57–63. https://doi.org/10.1016/j.pnpbp.2013.08.013

    Article  CAS  Google Scholar 

  • Dolan SB, Forster MJ, Gatch MB (2017) Discriminative stimulus and locomotor effects of para-substituted and benzofuran analogs of amphetamine. Drug Alcohol Depend 180:39–45. https://doi.org/10.1016/j.drugalcdep.2017.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott S, Evans J (2014) A 3-year review of new psychoactive substances in casework. Forensic Sci Int 243:55–60. https://doi.org/10.1016/j.forsciint.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  • EMCDDA-Europol (2011) EMCDDA-Europol 2010 Annual Report on the implementation of Council Decision 2005/387/JHA. Lisbon, Portugal. Available at: http://www.emcdda.europa.eu/system/files/publications/644/EMCDDA-Europol_Annual_Report_2010A_281336.pdf [15 May 2016]

  • EMCDDA-Europol (2012) EMCDDA-Europol 2011 Annual Report on the implementation of Council Decision 2005/387/JHA. Lisbon, Portugal. Available at: http://www.emcdda.europa.eu/system/files/publications/689/EMCDDA-Europol_Annual_Report_2011_2012_final_335568.pdf [15 May 2016]

  • EMCDDA-Europol (2014) EMCDDA-Europol 2013 Annual Report on the implementation of Council Decision 2005/387/JHA. Lisbon, Portugal. Available at: http://www.emcdda.europa.eu/system/files/publications/814/TDAN14001ENN_475519.pdf [15 May 2016]

  • Eshleman AJ, Nagarajan S, Wolfrum KM, Reed JF, Swanson TL, Nilsen A, Janowsky A (2019) Structure-activity relationships of bath salt components: substituted cathinones and benzofurans at biogenic amine transporters. Psychopharmacology 236:939–952. https://doi.org/10.1007/s00213-018-5059-5

    Article  CAS  PubMed  Google Scholar 

  • Evans-Brown M, Sedefov R (2018) Responding to new psychoactive substances in the European Union: early warning, risk assessment, and control measures. Handb Exp Pharmacol 252:3–49. https://doi.org/10.1007/164_2018_160

    Article  CAS  PubMed  Google Scholar 

  • Fuwa T, Suzuki J, Tanaka T, Inomata A, Honda Y, Kodama T (2016) Novel psychoactive benzofurans strongly increase extracellular serotonin level in mouse corpus striatum. J Toxicol Sci 41:329–337. https://doi.org/10.2131/jts.41.329

    Article  CAS  PubMed  Google Scholar 

  • Gatch MB, Dolan SB, Forster MJ (2019) Locomotor activity and discriminative stimulus effects of five novel synthetic cathinone analogs in mice and rats. Drug Alcohol Depend 199:50–58. https://doi.org/10.1016/j.drugalcdep.2019.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glennon RA (2014) Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. In: Linda PD (ed) Advances in Pharmacology. Academic Press, pp 581-620

  • Greene SL (2013) Benzofurans and benzodifurans. In: Dargan PI, Wood DM (eds) Novel psychoactive substances classification. Pharmacology and Toxicology. Academic Press, London, pp 383–392

    Chapter  Google Scholar 

  • Hofer KE, Faber K, Muller DM, Hauffe T, Wenger U, Kupferschmidt H, Rauber-Luthy C (2017) Acute toxicity associated with the recreational use of the novel psychoactive benzofuran N-methyl-5-(2 aminopropyl)benzofuran. Ann Emerg Med 69:79–82. https://doi.org/10.1016/j.annemergmed.2016.03.042

    Article  PubMed  Google Scholar 

  • Hondebrink L, Zwartsen A, Westerink RHS (2018) Effect fingerprinting of new psychoactive substances (NPS): what can we learn from in vitro data? Pharmacol Ther 182:193–224. https://doi.org/10.1016/j.pharmthera.2017.10.022

    Article  CAS  PubMed  Google Scholar 

  • Iversen L, Gibbons S, Treble R, Setola V, Huang X-P, Roth BL (2013) Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol 700:147–151. https://doi.org/10.1016/j.ejphar.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  • Kamour A, James D, Lupton DJ, Cooper G, Eddleston M, Vale A, Thompson JP, Thanacoody R, Hill SL, Thomas SH (2014) Patterns of presentation and clinical features of toxicity after reported use of ([2-aminopropyl]-2,3-dihydrobenzofurans), the 'benzofuran' compounds. A report from the United Kingdom National Poisons Information Service. Clin Toxicol 52:1025–1031. https://doi.org/10.3109/15563650.2014.973115

    Article  CAS  Google Scholar 

  • Kim M, Yang CH, Lee YS, Jang C-G, Oh S, Lee S (2019) Effects of aromatic ring-substituted phenethylamines on the release of dopamine and serotonin. Forensic Toxicol 37:104–112. https://doi.org/10.1007/s11419-018-0440-y

    Article  CAS  Google Scholar 

  • King LA (2014) New phenethylamines in Europe. Drug Test Anal 6:808–818. https://doi.org/10.1002/dta.1570

    Article  CAS  PubMed  Google Scholar 

  • Kolanos R, Saldoth F, Jain AD, Partilla JS, Baumann MH, Glennon RA (2015) Structural modification of the designer stimulant α-pyrrolidinovalerophenone (α-PVP) influences potency at dopamine transporters. ACS Chem Neurosci 6:1726–1731. https://doi.org/10.1021/acschemneuro.5b00160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krpo M, Luytkis HC, Haneborg AM, Hoiseth G (2018) A fatal blood concentration of 5-APB. Forensic Sci Int 291:e1–e3. https://doi.org/10.1016/j.forsciint.2018.08.044

    Article  CAS  PubMed  Google Scholar 

  • Luethi D, Kolaczynska KE, Docci L, Krahenbuhl S, Hoener MC, Liechti ME (2018) Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology 134:4–12. https://doi.org/10.1016/j.neuropharm.2017.07.026

    Article  CAS  PubMed  Google Scholar 

  • Luethi D, Kolaczynska KE, Walter M, Suzuki M, Rice KC, Blough BE, Hoener MC, Baumann MH, Liechti ME (2019) Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems. J Psychopharmacol 33:831–841. https://doi.org/10.1177/0269881119844185

    Article  CAS  PubMed  Google Scholar 

  • Luethi D, Liechti ME (2020) Designer drugs: mechanism of action and adverse effects. Arch Toxicol 94:1085–1133. https://doi.org/10.1007/s00204-020-02693-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madras BK (2017) The growing problem of new psychoactive substances (NPS). Curr Top Behav Neurosci 32:1–18. https://doi.org/10.1007/7854_2016_34

    Article  CAS  PubMed  Google Scholar 

  • Maier J, Mayer FP, Luethi D, Holy M, Jäntsch K, Reither H, Hirtler L, Hoener MC, Liechti ME, Pifl C, Brandt SD, Sitte HH (2018) The psychostimulant (±)-cis-4,4′-dimethylaminorex (4,4′-DMAR) interacts with human plasmalemmal and vesicular monoamine transporters. Neuropharmacology 138:282–291. https://doi.org/10.1016/j.neuropharm.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  • Marusich JA, Antonazzo KR, Blough BE, Brandt SD, Kavanagh PV, Partilla JS, Baumann MH (2016) The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue. Neuropharmacology 101:68–75. https://doi.org/10.1016/j.neuropharm.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  • McIntyre IM, Gary RD, Trochta A, Stolberg S, Stabley R (2015) Acute 5-(2-aminopropyl)benzofuran (5-APB) intoxication and fatality: a case report with postmortem concentrations. J Anal Toxicol 39:156–159. https://doi.org/10.1093/jat/bku131

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin G, Morris N, Kavanagh PV, Power JD, Twamley B, O'Brien J, Talbot B, Dowling G, Mahony O, Brandt SD, Patrick J, Archer RP, Partilla JS, Baumann MH (2015) Synthesis, characterization, and monoamine transporter activity of the new psychoactive substance 3′,4′-methylenedioxy-4-methylaminorex (MDMAR). Drug Test Anal 7:555–564. https://doi.org/10.1002/dta.1732

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Suzuki T, Inomata A (2018) Preventive effects of fructose and N-acetyl-L-cysteine against cytotoxicity induced by the psychoactive compounds N-methyl-5-(2-aminopropyl)benzofuran and 3,4-methylenedioxy-N-methamphetamine in isolated rat hepatocytes. J Appl Toxicol 38:284–291. https://doi.org/10.1002/jat.3523

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Suzuki T, Tada Y, Inomata A (2017) Cytotoxic effects of psychotropic benzofuran derivatives, N-methyl-5-(2-aminopropyl)benzofuran and its N-demethylated derivative, on isolated rat hepatocytes. J Appl Toxicol 37:243–252. https://doi.org/10.1002/jat.3351

    Article  CAS  PubMed  Google Scholar 

  • Nugteren-van Lonkhuyzen JJ, van Riel AJHP, Brunt TM, Hondebrink L (2015) Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug Alcohol Depend 157:18–27. https://doi.org/10.1016/j.drugalcdep.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  • Rickli A, Kopf S, Hoener MC, Liechti ME (2015) Pharmacological profile of novel psychoactive benzofurans. Br J Pharmacol 172:3412–3425. https://doi.org/10.1111/bph.13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479:23–40. https://doi.org/10.1016/j.ejphar.2003.08.054

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41. https://doi.org/10.1002/1098-2396(20010101)39:1<32::Aid-Syn5>3.0.Co;2-3

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA (2003) In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J Pharmacol Exp Ther 307:138–145. https://doi.org/10.1124/jpet.103.053975

    Article  CAS  PubMed  Google Scholar 

  • Sahai MA, Davidson C, Khelashvili G, Barrese V, Dutta N, Weinstein H, Opacka-Juffry J (2017) Combined in vitro and in silico approaches to the assessment of stimulant properties of novel psychoactive substances - the case of the benzofuran 5-MAPB. Prog Neuro-Psychopharmacol Biol Psychiatry 75:1–9. https://doi.org/10.1016/j.pnpbp.2016.11.004

    Article  CAS  Google Scholar 

  • Sandtner W, Stockner T, Hasenhuetl PS, Partilla JS, Seddik A, Zhang YW, Cao JJ, Holy M, Steinkellner T, Rudnick G, Baumann MH, Ecker GF, Newman AH, Sitte HH (2016) Binding mode selection determines the action of ecstasy homologs at monoamine transporters. Mol Pharmacol 89:165–175. https://doi.org/10.1124/mol.115.101394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (2003) 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63:1223–1229. https://doi.org/10.1124/mol.63.6.1223

    Article  CAS  PubMed  Google Scholar 

  • Shimshoni JA, Winkler I, Golan E, Nutt D (2017) Neurochemical binding profiles of novel indole and benzofuran MDMA analogues. Naunyn Schmiedeberg's Arch Pharmacol 390:15–24. https://doi.org/10.1007/s00210-016-1297-4

    Article  CAS  Google Scholar 

  • Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (2016) In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. J Pharmacol Exp Ther 357:134–144. https://doi.org/10.1124/jpet.115.229765

    Article  CAS  PubMed  Google Scholar 

  • Sitte HH, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36:41–50. https://doi.org/10.1016/j.tips.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  • Stanczuk A, Morris N, Gardner EA, Kavanagh P (2013) Identification of (2-aminopropyl)benzofuran (APB) phenyl ring positional isomers in Internet purchased products. Drug Test Anal 5:270–276. https://doi.org/10.1002/dta.1451

    Article  CAS  PubMed  Google Scholar 

  • Tettey JNA, Crean C, Ifeagwu SC, Raithelhuber M (2018) Emergence, diversity, and control of new psychoactive substances: a global perspective. Handb Exp Pharmacol 252:51–67. https://doi.org/10.1007/164_2018_127

    Article  CAS  PubMed  Google Scholar 

  • Welter J, Brandt SD, Kavanagh P, Meyer MR, Maurer HH (2015a) Metabolic fate, mass spectral fragmentation, detectability, and differentiation in urine of the benzofuran designer drugs 6-APB and 6-MAPB in comparison to their 5-isomers using GC-MS and LC-(HR)-MSn techniques. Anal Bioanal Chem 407:3457–3470. https://doi.org/10.1007/s00216-015-8552-2

    Article  CAS  PubMed  Google Scholar 

  • Welter J, Kavanagh P, Meyer MR, Maurer HH (2015b) Benzofuran analogues of amphetamine and methamphetamine: studies on the metabolism and toxicological analysis of 5-APB and 5-MAPB in urine and plasma using GC-MS and LC-(HR)-MSn techniques. Anal Bioanal Chem 407:1371–1388. https://doi.org/10.1007/s00216-014-8360-0

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I, Wanat MJ, Clark JJ, Phillips PEM (2010) Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci 3:29–71. https://doi.org/10.1007/7854_2009_27

    Article  PubMed  PubMed Central  Google Scholar 

  • Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE, Baumann MH (2009) Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther 329:738–746. https://doi.org/10.1124/jpet.108.146142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwartsen A, Verboven AHA, van Kleef R, Wijnolts FMJ, Westerink RHS, Hondebrink L (2017) Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay. Toxicol in Vitro 45:60–71. https://doi.org/10.1016/j.tiv.2017.05.010

    Article  CAS  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4